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ABSTRACT 
 
The aim of this project is to research statistical tests that detect non-randomness in a true random 
number generator (http://www.random.org). An industry-standard suite of tests was chosen to verify the 
complete randomness, from a statistical viewpoint, of the numbers generated by Random.org. It is 
envisaged that the test suite will be ran on Random.org numbers daily with results being displayed on the 
website. The performance of the output of Random.org is compared to other commonly used 
pseudorandom number generators and true random number generators. The paper also addresses a 
number of unresolved issues that need further exploration. 



PREFACE 
 

An ideal random number generator is a fiction 
Schindler and Killman [4] 

 
The client of this project is the Distributed Systems Group (DCG), a research group in the Department of 
Computer Science in Trinity College Dublin. They operate a public true random number service which 
generates randomness based on atmospheric radio noise. 
 
The aim of the project is essentially to verify that the output of its random number service is completely 
random and to recommend a suite of tests that can be ran daily on the output of Random.org. Additionally 
the aim is to compare Random.org to some commonly used random number generators – both pseudo 
and true. 
 
The work carried out in this project can undoubtedly be developed upon. Although a substantial amount 
was achieved given the time constraints, there are some pertinent issues raised throughout the report 
that need further consideration. The current opportunities to explore in this area seem endless. Random 
numbers are being increasingly used in all aspects of life and have become a staple in many fields, not 
just statistics. It seems that while a host of research has been done it is far from complete. 
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1. INTRODUCTION 
 
This chapter introduces the client and the project. It defines the terms of reference and also gives a brief 
overview of the remaining chapters to guide the reader. 
 
1.1 The Client 
 
Established in 1981, the Distributed Systems Group (DSG) [1] is both the longest standing and largest 
research group in the Department of Computer Science at Trinity College Dublin. DSG conducts basic 
and applied research into all aspects of distributed computing extending from the theoretical foundations 
underpinning the field to system engineering issues. They currently focus on four key overlapping topics: 
middleware, ubiquitous computing, mobile computing, and software engineering.  
 
1.2 Project Background 
 
The Distributed Systems Group is operating a public true random number service 
(http://www.random.org) which uses radio noise as a source of randomness to generate true random 
numbers. A technical description of how the noise is converted into ones and zeroes is detailed in 
Appendix M. The numbers are currently made available via a web server. Since it went online in October 
1998, Random.org has served nearly 50 billion random bits to a variety of users. Its popularity is on the 
rise and at the moment the web site receives approximately 50,000 hits per day. These numbers are 
available free of charge on the website and are also available in many different formats. The client wishes 
to verify that the output of its random number service can be considered completely random. 
 
Louise Foley, a former MSISS student, conducted a somewhat similar project in April 2001 to this for her 
final year project entitled “Analysis of an Online Random Number Generator”. [2] The set of statistical 
tests she recommended to test Random.org on a daily basis have not been implemented. John Walker’s 
ENT Program [3] is still used to test the numbers generated. Since the time of the former report the client 
has made adjustments to the random number generator. This project builds and expands upon the ideas 
in the former study. 
 
1.3 Terms of Reference 
 
Following are the terms of reference as confirmed at the interim reporting1 stage in November, 2004: 
• To conduct a literature review of the applications of random number generators and to contrast the 

use of true random number generators and pseudo random number generators; 
• To research statistical tests that detect non-randomness, review statistical test suites available, and 

then propose a set of statistical tests to be applied to the numbers generated by Random.org; 
• To consider other random number generators as possible comparative studies and compare 

Random.org to a selection of these: 

                                                 
1 See Appendix B for complete interim report. 
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• To define, prioritise and spec the efficiency of the implementation of the proposed suite. 
 
Note: Contrary to the original project guidelines2 the client did not require that the author code the tests for 

integration with the Random.org server. 

The difficulties encountered while fulfilling these terms of reference are detailed in Appendix C. 
 
1.4 Report Summary 
 
Chapter 2 is a summary of the findings and recommendations of the project 
Chapter 3 is a literature review of the broad area of random number generation. It looks at the definition 
of a random sequence, the applications of random numbers, types of generators, the statistical testing 
approach as well as the statistical test suites that are currently being used. 
Chapter 4 raises some issues that need to be considered before recommending a statistical test suite 
that detects non-randomness in sequences of numbers. It also addresses the methodology of the random 
number testing. 
Chapter 5 discusses the performance of the output of Random.org and some comparative generators 
having been subjected to the recommended test suite. 
Chapter 6 deals with some open issues in the area of testing that need further consideration. 
 
For the reader who is looking for something specific an index has been compiled which may be useful for 
direction to the relevant section (Appendix S). 
 
 

                                                 
2 The original project guidelines are given in Appendix A. 
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1. CONCLUSIONS AND RECOMMENDATIONS 
 
This chapter summarises the key findings and recommendations of the project. The chapters that follow 
give a more in-depth discussion and analysis of these.  
 
Conclusions 
 
Random numbers are crucial ingredients for a whole range of applications – including cryptography, 
simulation, gaming, sampling and aesthetics - and their consumption is rapidly increasing. (Section 3.2) 
 
There are essentially two types of random number generators – true and pseudo. The fundamental 
difference between the two types is that true random number generators sample a source of entropy 
whereas pseudorandom number generators instead use a deterministic algorithm to generate numbers. 
In comparing true random number generators and pseudorandom number generators each have their 
merits and limitations. Completely random true random number generators have no periodicities, no 
predictability, no dependencies, a high level of security and are conceptually nice. Nevertheless they are 
slow, inefficient and costly, cumbersome to install, their sequences are not reproducible and they are 
subject to manipulation. The reverse is true of pseudorandom number generators. Which is better 
depends largely on the application. (Section 3.3) 
 
For all but trivial applications the quality of the underlying random number generator is critical and it is 
therefore essential that the generator be tested.  
 
Statistical hypothesis testing is the most widely used method to verify that the numbers produced by a 
generator purported to be a random number generator are in fact random and it is the method employed 
here also. Other methods of testing include graphical examinations of the numbers or transformed 
numbers, using the numbers as input to a known problem and also application based testing.  (Section 
2.4)  
 
The main difficulty in testing a multi-purpose generator like Random.org is that what should be deemed 
sufficiently random depends on the application. Furthermore, no amount of statistical testing can 
guarantee that a random number generator is indeed completely random. Rather, if a generator passes a 
wide variety of tests then confidence in its randomness increases. (Section 2.4) 
 
Having considered many statistical test suites reported in the literature the National Institute of Standards 
and Technology (NIST) test suite is recommended, mainly for the pragmatic reason that it is recognised 
as the industry standard. The NIST test suite consists of 15 tests.  
 
Random.org passes the NIST test suite; its pass rates and uniformity checks are in line with what NIST 
considers sufficient to be deemed random. Random.org can now be recognised as passing the industry 
standard suite of tests. (Chapter 5 & Appendix N)  
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Two comparative pseudorandom number generators, the Microsoft Excel RNG and the Minitab RNG are 
also subjected to the NIST test suite. Minitab passes the suite but Excel fails on a lack of uniformity in two 
of the fifteen tests. 
 
Two comparative true random number generators, Hotbits and Randomnumbers.info were subjected to 
the suite of tests once. Hotbits passed all tests while Randomnumbers.info failed two tests. Although this 
is suggestive of non-randomness a conclusion should not be made about the generator before 
conducting further investigation. 
 
While NIST is the industry standard suite of statistical tests the author has reservations about how 
satisfactory the suite is. Some of the statistical approaches suggested by NIST are questionable. Firstly, 
NIST recommends that each test be ran multiple times. The classical approach to hypothesis testing, 
however, is to run the test only once. The recommendation by NIST to conduct a chi-square test on the p-
values is also open to discussion. Furthermore concern arises over the number of mistakes found in the 
NIST manual as well as the lack of clarity in how the test suite should be implemented. There is also a 
deficiency in the explanation of the rationale for the particular tests in the suite. (Section 4.2, Appendix J) 
 
Recommendations 
 
It is recommended that Random.org numbers be subjected to the NIST test suite on a regular basis. A 
prioritisation of the tests is made but should the client choose to implement a subset of the suite then 
Random.org cannot be deemed to pass the industry standard suite of tests. For this reason it is 
suggested that the entire suite be implemented. (Sections 3.5 & 4.1.4) 
 
There are some unresolved issues that need consideration. Certainly, the NIST suite needs to be 
evaluated. The power of the tests in the suite especially needs to be investigated. The independence and 
coverage of tests also deserves some attention. Additionally how to interpret the results needs to be 
clarified. (Section 6) 
 
Although the NIST test suite is recommended to be used to test Random.org on a regular basis this 
recommendation should be subject to review in time. New statistical tests will be continuously developed 
to gather evidence that random number generators are of high quality. While the NIST suite is currently 
considered the most comprehensive in the literature it will undoubtedly be replaced by a new test suite 
that hopefully will address the unresolved issues identified here satisfactorily. 
 
It is suggested that Random.org run the 15 tests in the NIST suite daily but that, instead of carrying out 
the debatable statistical analysis that NIST recommend, adopt a more flexible approach. The p-values 
should be extracted and essentially looked at. The suggested graphics in Appendix O should be 
constructed to gain further insight. 
 
While it is not practical for the client to tailor tests to the specific applications of Random.org numbers it is 
recommended that the user should perform application-based testing where possible in addition to the 
NIST statistical testing that is carried out at the Random.org end. 
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3. LITERATURE REVIEW 
 
This chapter reviews the literature and addresses such questions as what is a random number sequence, 
what are random numbers used for, what kinds of random number generators are there, how are random 
numbers tested, and what test suites are available in the literature. 
 
3.1 Definition of a Random Number Sequence 

 
It may be taken for granted that any attempt at defining  

disorder in a formal way will lead to a contradiction. This  
does not mean that the notion of disorder is contradictory. It 

is so, however, as soon as I try to formalize it. 
~ Hans Freudenthal [39] 

 
Philosophers have discussed many ways to define randomness, but few are relevant for the purposes 
here3. The reason why the definition of random is considered here is because it is impossible to design 
meaningful tests without specifying what is meant by random and non-random. 
 
Knuth puts forward the notion that in a sense, there is no such thing as a random number; for example, is 
1 a random number? Rather what is spoken of is “a sequence of independent random numbers. [5] And 
so, it is a random number sequence, as opposed to a random number, that should be defined. 
 
A random sequence could be interpreted as the result of the flips of an unbiased “fair” coin with sides that 
are labelled “0” and “1”, with each flip having the probability of exactly 0.5 of producing a “0” or “1”. 
Furthermore, the flips are independent of each other; the results of any previous coin flips does not affect 
future coin flips”. There should be complete forward (and backward) unpredictability. The unbiased “fair” 
coin is thus the perfect random number generator, since the “0” and “1” values will be randomly 
distributed. All elements of the sequence are generated independently of each other, and the value of the 
next element in the sequence cannot be predicted, regardless of how many elements have already been 
produced [6]. 
 
Obviously, the use of unbiased coins for applications that require many numbers is impractical. 
Nonetheless, the hypothetical idea of such a generator is useful in defining a random sequence. This, of 
course, is ignoring the possibility of some non-randomness being introduced in the way in which the coins 
are flipped. This point highlights the difficulty in adequately defining a random sequence. For the 
purposes of defining a random sequence here, however, it is a useful analogy and captures the two 
important properties; independence and equally likely. 
 

                                                 
3 Interestingly, it is only in recent times that the concept of something random existing has been accepted. Numerous philosophers 
have in the past argued the case for total causality known as 'hard determinism'. This theory dictates that we have no free will and 
are merely acting under the illusion of possessing it. Every movement of every particle is the direct result of something before it - as 
is every thought we have. That is to say that everything is in effect predetermined, in that it is the only thing that could happen given 
the events that preceded it. [4] 
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Encompassing these ideas in a formal mathematical statement the following working definition is 
proposed: 

 
Let nX be a sequence of random variables, where ...3,2,1=n  

nX  is a binary random variable, meaning that the possible values of nX  are 0 and 1. 

If  5.0)thers all|1( == oXP n  

Or equivalently, the joint distribution of all the sequences is N5.0 at every point of the sample N 
space, of which there are 2N points. 
 

Should a sequence satisfy this definition then it can be considered random. 
 
Random numbers are used in many different forms from particular distributions, for example, integer, 
binary, uniform, etc. depending on what their intended use is. The only numbers that are of concern here 
are binary numbers because once the binary numbers produced by a random number generator are 
deemed to be random, then it is true that their transformation to any interval can also be deemed to be 
random. This is provided that the appropriate transformation is carried out correctly. Essentially there 
must be 2N  numbers in the sequence to carry out any transformation so that the transformed numbers 
satisfy the independence and equally likely properties. 
 
 
3.2 Applications of Random Numbers 

"Chance governs all" 
~ Milton 

 
Random numbers are crucial ingredients for a whole range of usages, including cryptography, simulation, 
gaming, sampling, decision making and aesthetics. How random numbers are used in these fields is 
discussed in the subsections that follow (3.2.1-3.2.6). This is an overview of the main applications of 
random numbers; it is by no means a definitive list. 
 
3.2.1 Cryptography 
 
The story of cryptography begins when Julius Caesar sent messages to his faithful acquaintances. He did 
not trust the messengers and so he replaced every A in the message by a D, every B by an E, and so on 
through the alphabet. Only someone who knew the ‘shift by 3’ rule could decipher his messages. [7] 
Cryptography is the art or science of turning meaningful sequences into apparently random noise in such 
a way that only a key-holder can recover the original data. [8] Today, the rules have obviously evolved to 
become a lot more sophisticated, especially with the rapid evolution of computing power. The objective, 
however, remains largely the same; to preclude an adversary from gaining advantage through knowing 
what the message sent says. What is needed to achieve this are sequences that are hard to predict 
unless the mechanism generating them is known. And so, at the heart of all cryptographic systems is the 
generation of secret, unguessable numbers – random numbers. Not only is cryptography a tool used to 
protect national secrets and strategies like in Caesar’s time but its use has crossed over into many 
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different areas including the securing of electronic commerce around the world and the protecting of 
private communication over the internet, to name but a couple. 
 
3.2.2 Simulation 
 
Simulation is the re-creation, albeit in a simplified manner, of a complex phenomena, environment, or 
experience, providing the user with the opportunity for some new level of understanding. When a 
computer is used to simulate natural phenomena, random numbers are required to make things realistic. 
Simulation covers many applied disciplines from the study of nuclear physics where particles are subject 
to random collisions to operations research where people come into, say, an airport at random intervals. 
[5] Increasingly sophisticated simulation studies are being performed that require more and more random 
numbers and whose results are more sensitive to the quality of the underlying random number generator. 
 
3.2.3 Gaming 
 
Rolling dice, shuffling decks of cards, spinning roulette wheels, etc are fascinating pastimes for just about 
everybody. [5] Randomness is central to games of chance and vital to the gaming industry. With the 
widespread adoption of online gaming, an e-industry worth billions of euro, this application is becoming 
an increasing consumer of random numbers.  
 
3.2.4 Sampling 
 
It is often impractical to examine all possible cases, but a random sample provides insight as to what 
constitutes “typical” behaviour. [5] Sampling with random numbers gives each member of the population 
an equal chance of being chosen, avoiding the problem of bias. Random numbers are used for sample 
selection by researchers in many fields, both in the academic and working world. 
 
3.2.5 Aesthetics 
 
The use of random numbers in music, art and poetry is becoming increasingly popular. Some are 
attracted to the idea, for example, of music that cannot be predicted and therefore become interested in 
the use of random numbers for music production. Random numbers have given some artists a method by 
which they can distinguish themselves. [9,10] 
 
3.2.6 Applications of Random.org Numbers 
 
Having briefly discussed the broad applications of random numbers above it is now interesting to turn to 
Random.org to see what its users are using numbers for. There is a page on Random.org called “Who is 
using Random.org?” that lists some of the things that people use its random numbers for. The list is 
compiled based on people emailing the client and is therefore not a definitive list of the applications of 
Random.org’s numbers. The uses fall under many of the application categories outlined in Sections 3.2.1-
3.2.5 above. Specific examples of what Random.org users do with the random numbers include: 
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• A Danish TV station TV2 runs an online backgammon server for which they get more than 300,000 

dice rolls per day - this is probably the biggest consumer of numbers from Random.org (Gaming) 
• An American band called Technician uses numbers from Random.org to generate unique covers for 

the band's CDs (Aesthetics) 
• Many of the users cited use the numbers for choosing winners of a draw (Sampling) 
• One company uses the numbers for choosing employees at random for drug screening (Sampling) 
The fact that Random.org random numbers are used for a variety of applications poses problems in the 
testing of the generator. This is further discussed in 3.4.1. 
 
3.2.7 Concluding Remarks 
 
Random numbers are an important building block in applications across various fields of work and play. 
The consumption or random numbers is undoubtedly increasing rapidly as is evident from the preceding 
discussions. The applications range from the critical to the trivial and in the former case great care has to 
be taken to choose the right type of random number generator as well a random number generator that 
generates numbers that are sufficiently random. Both of these issues will be discussed in Sections 3.3 
and X respectively. 
 
 
3.3 Types of Random Number Generators 
 
There are two basic types of generators to produce random sequences – true (or physical) random 
number generators (TRNGs) and pseudorandom number generators (PRNGs). The essential difference 
between the two types is that TRNGs sample a source of entropy whereas PRNGs instead use a 
deterministic algorithm to generate random numbers. A brief overview of TRNGs and PRNGs are detailed 
below. 
 
3.3.1 True RNGs 

Nothing is random, only uncertain. 
~ Gail Gasram 

 
A true random number generator requires a naturally occurring source of randomness, i.e. entropy, to 
generate random numbers. It samples this source of entropy and processes it through a computer to 
produce a sequence of random numbers. True RNGs refer to physical RNGs and should not be taken as 
completely random because they are called “true”. True random numbers are by definition entirely 
unpredictable. The use of a distillation process is generally needed to overcome any weaknesses in the 
entropy source that results in the production of non-random numbers (e.g. the occurrence of long strings 
of zeroes or ones). The entropy source typically consists of some physical quantity, such as atmospheric 
noise from a radio (e.g. Random.org), the elapsed time between the emission of particles during 
radioactive decay (e.g. Hotbits [11]), the thermal noise from a semiconductor diode or the frequency 
instability of a free running oscillator. There are more novel sources of entropy used to generate random 
numbers such as the photographs of lavalamps (e.g. lavarand [12]).  
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3.3.2 Pseudo-RNGs 

Anyone who attempts to generate random numbers by  
deterministic means is, of course, living in a state of sin. 

~ John von Neumann 
 
If von Neumann’s declaration is to be believed then statisticians and cryptographers are living in a state of 
sin because PRNGs are more widely used than TRNGs. Indeed the volume of literature on PRNGs far 
exceeds that on TRNGs. Pseudo random numbers are not strictly random; their generation does not 
depend on a source of entropy. Rather they are deterministic, meaning that they are computed using a 
mathematical algorithm. If the algorithm and the seed (i.e. the number that is used to start the generation) 
are known then the numbers generated are predictable. 
 
The very notion that a deterministic formula could generate a random sequence seems like a 
contradiction. The main objective with PRNGs is to obtain sequences that behave as if they are random. 
The output sequences of many PRNGs are statistically indistinguishable from completely random 
sequences and ironically, PRNGs often appear to be more random than random numbers obtained from 
TRNGs. [6] By their definition, however, the maximum length of sequences produced by all these 
algorithms is finite and these sequences are reproducible, and thus can be “random” only in some limited 
sense. [13] A brief discussion of the various types of PRNGs that are in use is given in Appendix D. 
 
3.3.3 Comparison of RNGs and PRNGs 
 
Both true random number generators and pseudorandom number generators have their advantages and 
disadvantages. Generally the limitation of one type is the merit of the other. Because of this only the 
advantages and disadvantages of TRNGs are listed in Table 3.1 (in considering PRNGs reverse the 
advantages and disadvantages of the TRNG). The table applies to true RNGs that are deemed to be 
completely random. This analysis perhaps sheds light on the suitability of particular RNGs to particular 
applications. 
  

True RNGs 
Advantages Disadvantages 

No periodicities  Slow and inefficient 
No predictability of random numbers based on 
knowledge of preceding sequences 

Cumbersome to install and run 

Certainty that there are no dependencies 
present 

random number sequences are not 
reproducible  

High level of security Costly 
Conceptually nice – not based on algorithm Possibility of manipulation 
 

Table 3.1 Advantages and Disadvantages of TRNGs 
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It an open question as to whether it is possible in any practical way to distinguish the output of a well 
designed pseudo-random number generator from a perfectly random source without knowledge of the 
generator's internal state. Which type is “better” or “more suitable” depends greatly on the application. It is 
for this reason that the suitability of Random.org is commented on in the context of each broad 
application as described in Section 3.2.  
 
3.3.4 What about Random.org? 
 
What Random.org is actually used for has already been addressed but what is more to the point is what 
should Random.org be used for? According to the client Random.org is intended primarily for educative 
purposes but also aims to be useful for non-critical applications. What follows is a comment on 
Random.org under the various application headings: 
 
Cryptography Random.org is not very useful for cryptography as a generator that distributes 

its numbers over the internet. The security of the numbers cannot be 
guaranteed and the possibility that the numbers be observed by a third party 
while in transit is very real. However, because the Random.org RNG produces 
true random numbers the generator could perhaps be used in the generation of 
cryptographic keys if the numbers were not distributed online (and if noone 
hacked into the server!). A mixed approach to random number generation is 
often taken in cryptographic applications, that is, the pseudo RNG is seeded 
with output from a true RNG. This means that some entropy is introduced and a 
PRNG is used thereafter. 

Simulation Random.org is not very useful for most simulations because it does not 
produce, in a reasonable amount of time, the vast quantities of numbers that 
would be needed. Moreover, it cannot reproduce the numbers which is a 
desirable for simulations. (Generally one input variable is changed to see the 
effect on the result. If the random numbers are changing for every run of the 
simulation then it would not be possible to distinguish if a change in the results 
was due to the random numbers or the change in an input variable) 
Random.org could however be used for small-scale simulations where the 
numbers could be saved relatively easily. 

Gaming Random.org is useful for gaming and indeed this was its original intended 
application. Secrecy is not important here, unless of course the numbers 
generated are not used immediately (in which case there is again the problem 
of interception of the numbers in transit). 

Sampling Random.org is also useful for sampling applications that do not require vast 
amounts of numbers, for example selecting a random sample from an electoral 
list for a survey. 
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3.4 Statistical Testing 

A foolish builder builds a house  
on sand. Test and verify the randomness  

of your random number generator.  
~ Casimir Klimasauskas [14] 

 
A key issue in this project is how to decide if a sequence is sufficiently random. It is not satisfactory to 
declare a sequence random based on its appearance. Knuth [5] exemplifies this: if some randomly 
chosen person was given a pencil and paper and asked to write down 100 random binary numbers, the 
chances are very slim that he would produce a satisfactory result. People tend to avoid things that seem 
non-random, such as long streams of zeroes or long streams of ones (although there is a 50% chance 
that a number should equal its predecessor). And if the same person was shown a table of completely 
random numbers, he would quite probably say that they are not random at all; the eye would spot certain 
apparent regularities. The point of these remarks is that human beings cannot be trusted to judge by 
themselves whether a sequence is random or not. Some unbiased mechanical tests need to be applied to 
objectively decide if a sequence is sufficiently random. The phrase “sufficiently random” is used because 
no amount of testing can prove that a given RNG is flawless. It only improves our confidence to a certain 
extent [15]. In fact, verifying the randomness of a RNG should really fall under the heading of acceptance 
testing. Even if the RNG is completely random it will be rejected occasionally. Conversely, even if the 
RNG is not random it will be accepted occasionally. 
 
The theory of statistics provides some quantitative measures for randomness and indeed statistical 
testing is the traditional and useful approach for testing random number generators, both true and pseudo. 
A statistical test is formulated to test a specific null hypothesis ( 0H ). For the purpose of this project, the 

null hypothesis under test is that the sequence being tested is random by the formal definition in Section 
3.1.  Associated with this is the alternative hypothesis ( AH  ) which, again for this project, is that the 

sequence is departs from the definition. For each applied test, a decision is derived that accepts or rejects 
the null hypothesis, i.e., whether the generator is (or is not) producing random numbers, based on the 
sequence that was produced. See Appendix E for more on hypothesis testing.  
 
A single statistical test is not adequate to verify the randomness of a sequence because the sequence 
could produce various types of non-randomness4. However, if a generator passes a wide variety of tests, 
then confidence in its randomness increases [16]. Compilations of tests are generally referred to as 
‘suites’ or ‘batteries’ of statistical tests. The statistical test suites are designed to measure the quality of a 
generator purported to be a random bit generator. While it is impossible to give a mathematical proof that 
a generator is indeed a RNG, the tests help detect certain kinds of weaknesses that the generator may 
have. This is accomplished by taking a sample output sequence of the generator and subjecting it to 

                                                 
4 This is not entirely true. Theoretically the joint distribution of sequences generated could be tested which would 
just involve one test. However, a very large number of observations would be required. Suppose, for example, that 
the length of the sequence is 1000 i.e. n=1000. There are 10002  possible sequences and it is necessary to test if these 
possible sequences are equally likely. Such a test is essentially a chi square test with 10002 categories which is 
obviously not practical. 
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various statistical tests and evaluate that the sequence possesses a certain attribute that a truly random 
sequence would be likely to exhibit. 
 
Each test within the suite tries to detect a different kind of non-randomness. Having said that the tests are 
not totally exclusive - there will generally be some overlap. Statistical test suites that have been proposed 
in the literature are considered in Section 3.5. If the sequence is deemed to have failed any one of the 
statistical tests within the suite, the generator may be rejected as being non-random; alternatively and 
advisably, the generator may be subjected to further testing. On the other hand, if the sequence passes 
all of the statistical tests, the generator is concluded to being random from a statistical point of view. This 
conclusion is, of course, not definite, but rather probabilistic. 
 
Although statistical testing, as described here, is the most widely used method of testing the randomness 
of a RNG, there are other ways to detect non-randomness in a sequence. One way involves including 
looking at pictures of random bits on a plane. These have been shown to reveal spatial dependencies 
which are not clearly detected in the quantitative tests [13]. Perhaps these types of tests complement the 
quantitative tests rather than being a stand-alone approach. For the people who knows little about 
statistical tests and hypothesis testing these are a nice tool to display that the numbers are random. Of 
course this type of exploratory data analysis supports but does not prove the hypothesis that the numbers 
are random. See Appendix O for kinds of graphics that could be constructed. Another approach to testing 
is to use the numbers generated by the RNG as input to a known problem. This approach is inherently a 
little haphazard. Yet another way to test RNGs is application-based testing. Essentially this involves 
testing how appropriate the generator is for a particular application. This is discussed in Section 6. 
 
Ideally all of these testing procedures, especially application based testing, should be employed when 
evaluating a RNG. The more testing conducted the more certain that the RNG is actually producing 
random numbers. This project, however, deals mostly with statistical hypothesis testing. 
 
3.4.1 Choosing what tests to use 
 
The tests simply go fishing. [17] There are an infinite number of possible statistical tests, each assessing 
the presence or absence of one of very many departures from what would be expected of a completely 
random sequence which, if detected, would indicate that the sequence is non-random. Because there are 
so many tests for judging whether a sequence is random or not, no specific finite set of tests is deemed 
“complete”. Any finite set of tests can miss certain defects and it follows that no amount of testing can 
guarantee that a generator is foolproof. 
 
Which tests are the good ones? This question has no general answer. It depends on what the RNG is to 
be used for. The very fact that the need for random numbers arises in many different applications as 
discussed in Section 3.2 creates difficulty in trying to assess and evaluate the usefulness of a particular 
generator. Choosing a “good quality” RNG for all applications may not be trivial [13]. In any case no set of 
statistical tests can absolutely certify a generator as appropriate for usage in a particular application, 
nevermind all applications. 
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Having said that the RNGs that are placed in general purpose software packages must be tested without 
knowing the millions of things they will be used for. The general purpose RNGs should be subjected to a 
wide variety of tests of different natures, able to detect different types of dependence or other “simple” 
structures likely to be harmful. [17] In the same way, Random.org must be tested without knowing the 
millions of things it will be used for.  
 
3.5 Review of test suites 
 
This section is a catalogue of test suite sources (in no particular order). Appendix X shows the tests 
contained within each test suite. 
 
3.5.1 Knuth  
Donald Knuth’s book “The Art of Computer Programming, Volume 2 (1st ed. 1969)” [5] is the most-quoted 
reference for the statistical testing of RNGs in the literature. Known to be a random number guru, his was 
the de facto standard set of tests for a long time but, although still a required background, is now 
somewhat outdated. For example he fails to mention cryptographic applications – this was perhaps a sign 
of the times when cryptography was not near as important as it is today. His tests are now seen to be 
quite mild, allowing known “bad” generators to pass the tests. Of course, what constitutes a “bad” 
generator depends on the application. 
 
3.5.2 Diehard 
Marsaglia comments that “in spite of the ease with which (statistical) tests of RNGs may be created, there 
are surprisingly few reported in the literature. The same simple, easily passed tests are reported again 
and again. Such is the power of the printed word.” [36] Marsaglia here is alluding to the uptake of Knuth’s 
work as the definitive gospel on the statistical testing of RNGs. With time developments have been made 
however and as computers become faster, more random numbers are being consumed than ever before. 
RNGs that once were satisfactory are no longer good enough for sophisticated applications in physics, 
combinatorics, stochastic geometry, etc. And so, in 1995 Marsaglia introduced a number of more 
stringent tests which go beyond Knuth’s classical methods in order to meet these new challenges. These 
tests are stringent in the sense that they are more difficult to pass. Unfortunately, this test suite seems not 
to have been maintained for the last few years [19]. Apparently Marsaglia has retired and it seems that 
noone has directly taken over his work. Despite this Marsaglia’s set of test is still, ten years after its 
publication, widely regarded as a very comprehensive collection of tests for detecting non-randomness. 
 
3.5.3 Crypt-X  
The Crypt-X suite of statistical test was developed by researchers at the Information Security Research 
Centre at Queensland University of Technology in Australia and is a commercial software package5. [20]  
Crypt-X tests are applied based on the type of algorithm being tested and so is obviously geared towards 
the testing of pseudo random number generators. Crypt-X supports stream ciphers, block ciphers and 
keystream generators.  
 

                                                 
5 It costs over €350 for an academic user. 
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3.5.4 National Institute of Standards and Technology (NIST) [2] 
Released in 2001, the NIST6 Statistical Test Suite [6] is a statistical package consisting of 16 tests that 
were developed to test the randomness of arbitrary long binary sequences produced by either hardware 
or software based cryptographic random or pseudorandom number generators. The test suite is the result 
of collaborations between the Computer Security Division and the Statistical Engineering Division at NIST 
in response to a perceived need for a credible and comprehensive set of tests for binary (not uniform) 
random number generators. The test suite makes use of both existing algorithms culled from the literature 
and newly developed tests. NIST is now by and large the standard in the world of RNG testing. 
 
3.5.5 ENT  
John Walker’s ENT Program [3] is yet another set of statistical tests to test for non-randomness in 
sequences. It was developed in 1998. Random.org currently uses this test set (as does Hotbits). The ENT 
program is described as being useful for those evaluating pseudorandom number generators for 
encryption and statistical sampling applications, compression algorithms, and other applications where 
the information density of a file is of interest.  
 
3.5.6 Previous MSISS Project  
In 2001 Louise Foley proposed a suite of five tests to replace John Walker’s ENT Program in testing the 
output of Random.org. [2] They were recommended specifically to test Random.org numbers. They were 
chosen on the basis that “they were suitable, straightforward and in accordance with the clients needs”. 
 
Note that this is not a definitive list of test suites that exist for testing random number generators though it 
captures the more popular ones in use.  

                                                 
6 NIST (National Institute of Standards and Technologoy is a non-regulatory federal agency within the U.S. 
Commerce Department's Technology Administration. NIST's mission is to develop and promote measurement, 
standards, and technology to enhance productivity, facilitate trade, and improve the quality of life. 
http://www.nist.gov/ 
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4. TESTING ISSUES AND METHODOLOGY  
This chapter deals firstly with a discussion of some issues stemming from the decision of which tests 
should be applied to examine Random.org and follows with making a decision and what the methodology 
involves. 
 
4.1 Testing Issues 
This section addresses some of the issues that arise in testing a random number generator. 
 
4.1.1 Same tests for RNGs and PRNGs? 
 
Some of the suites specify that they were developed for pseudo RNGs (Diehard, Crypt-X) while some 
others suites specify that they were developed for both true and pseudo RNGs (NIST). This raises the 
issue of whether or not the same tests should be applied to RNGs and PRNGs. This is not an easy 
question to answer.  
 
It can be argued that if the numbers are random then they pass the tests and it is irrelevant how they 
were generated. Some argue that the testing a true random generator differs from testing a pseudo-
random number generator. In particular, if one knows the design of the generator one can tailor the tests 
to be appropriate for that design. Certain types of PRNGs are susceptible to certain departures from 
randomness. PRNGs remain, by definition, constant. True RNGs, however are susceptible to aging  that 
is, the wear and tear of components. [40] This is of concern. It is not implausible, for example, that the 
numbers produced by a TRNG would gradually drift towards a bias of outputting more ones than zeroes. 
Because such aging may be gradual it may be difficult to detect for some time. 
 
Here, the former argument is taken on board, that is, if the numbers are random then they pass the tests 
and how they were generated is irrelevant. Aging should be picked up by the NIST test suite. Of course 
the more often the tests are run the quicker any sort of drift will be picked up. It is recommended that 
some graphics be displayed on the website which show the p-values over time (see Appendix O). This 
will highlight peculiarities in the p-values over time including perhaps the effect of aging. 
 
4.1.2 Test Suites application dependent? 
 
Another point to note from the list of statistical suites is that a lot of the test suites are designed for a 
particular application. For example, the tests detailed NIST suite were developed to detect non-
randomness for cryptographic applications, while Knuth and Marsaglia’s suites were developed for 
simulation applications. And ENT claims to test for both applications. This raises the issue of whether 
there should be a different set of tests depending on the application? 
 
Since the “Ferrenberg affair”7  it is known in the RNG user community that statistical tests alone do not 
suffice to determine the quality of a generator, but also application-based tests are needed. [22]. Indeed 

                                                 
7 This was a famous case in 1992 where physicists discovered that even "high-quality" random-number generators, 
which pass a battery of randomness tests, can yield incorrect results under certain circumstances.  [21]  
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some generators that are suitable for some applications are not suitable for others. And this is also true 
for different uses within a broad application. For example, for some simulations a particular RNG is fine to 
use but for other simulations may not be at all appropriate. Ideally, the generator should be tested for the 
intended application. Section 6.2 further discusses application based testing. 
 
The test suite proposed for Random.org cannot be application dependent because as already discussed 
in Section X Random.org must be tested without knowing the millions of things it will be used for. 
 
4.1.3 Why implement a new suite of tests? 
 
Random.org currently uses the ENT suite to test its output. While there is nothing “wrong” with the ENT 
statistical tests it seems that more probing test suites have been developed that pick up departure from 
randomness in a more comprehensive manner. Additionally the ENT suite is not widely used in the 
industry. This makes for awkward direct comparison with other generators.  
 
4.1.4 Which suite to use? 
 
In the evaluation of Random.org two of the aforementioned test suites were close contenders – Diehard 
and NIST8. The NIST framework, with a few alterations (see Appendix X), has been chosen to evaluate 
Random.org mostly for pragmatic reasons, including: 
 

• It is a standard that is widely recognised in the literature and industry [X, X, X]. This is the 
dominant argument as to why NIST is used. If it is shown that Random.org passes the NIST suite 
it can be said to pass the industry standard. This also makes for easy comparison between 
generators that have been subjected to the NIST suite, of which there are many. 

• It is the source with the most stringent tests, being designed to test generators for cryptographic 
applications. Because Random.org is not being tested for an application, it was thought most 
appropriate to use a test suite that tests for application with the highest stringency requirements 
(cryptography) and by default satisfies the requirements of other applications. Note that this 
means that the test set will fail some generators that are suitable for some applications. 

• It was used for the evaluation of AES (Advanced Encryption Algorithm) candidates, encryption 
algorithms deemed capable of protecting sensitive government information. [51] 

• The NIST tests were designed to be run on binary numbers. See section 3.1 as to why this is 
preferable. The NIST tests are designed to test binary sequences. Many others, including 
Diehard, are geared towards testing uniform numbers. 

• The issue of the independence and coverage of the statistical tests has been broached by NIST 
(though the reason was not available to examine). 

 
The NIST suite, it seems, is the standard in the world of RN generation at the moment. For this reason 
the client can confidently confirm that the numbers generation by Random.org are completely random if 

                                                 
8 Of course an existing battery of tests need not have been chosen at all. A new suite of tests could have been 
developed but this was deemed beyond the scope of the time constraints of this project. 
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they pass the battery of tests. There is no doubt, however, that there will be another standard in the future 
to replace the NIST suite, just as Diehard replaced Knuth’s suite and NIST has replaced the Diehard suite. 
 
4.1.5 Description of Tests 
 
Following is a brief overview of what kind of departures from randomness that the tests in the NIST suite 
aim to detect. See Appendix K for a more detailed description and step-by-step guide. 
 

  NIST Statistical Test Suite   
Test Defect Detected Property 
Frequency (monobit) Too many zeroes or ones Equally likely (global) 
Frequency (block) Too many zeroes or ones Equally likely (local) 
Runs test Oscillation of zeroes and ones too 

fast or too slow 
Sequential dependence (locally) 

Longest run of ones in a block Oscillation of zeroes and ones too 
fast or too slow 

Sequential dependence (globally) 

Binary matrix rank Deviation from expected rank 
distribution 

Linear dependence 

Discrete fourier transform (spectral) Repetitive patterns Periodic dependence 
Non-overlapping template matching Irregular occurences of a pre-

specified template 
Periodic dependence and equally 
likely 

Overlapping template matching Irregular occurences of a pre-
specified template 

Periodic dependence and equally 
likely 

Maurer's universal statistical Sequence is compressible Dependence and equally likely 
Linear complexity Linear feedback shift register (LFSR) 

too short 
Dependence   

Serial Non-uniformity in the joint distribution 
for m-length sequences 

Equally likely 

Approximate entropy Non-uniformity in the joint distribution 
for m-length sequences 

Equally likely 

Cumulative sums (cusum) Too many zeroes or ones at either an 
early or late stage in the sequence 

Sequential dependence 

Random excursions Deviation from the distribution of the 
number of visits of a random walk to a 
certain state 

Sequential dependence 

Random excursions variants Deviation from the distribution of the 
number of visits (across many 
random walks) to a certain state 

Sequential dependence 

      

Table 4.1 NIST Statistical Test Suite 

Note: There are a number of alterations to the NIST statistical test suite that have been taken into account when testing (see 

Appendix I for details). 

 
4.1.6 Revised Set of Tests 
 
The client expressed an interest in a prioritisation of tests within the recommended test suite. The 
problem with this, however, is that it cannot be then said that the numbers satisfy the NIST statistical test 
suite, the adopted industry standard.  
  
The author reluctantly categories the tests into the following three tiers: 
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Prioritisation of Tests       
Test Tier 1 Tier 2 Tier 3 
Frequency (monobit)   x 
Frequency (block) x x x 
Runs   x 
Longest run of ones in a block x x x 
Binary matrix rank  x x 
Discrete fourier transform (spectral) x x x 
Non-overlapping template matching x x x 
Overlapping template matching   x 
Maurer's universal statistical  x x 
Linear complexity  x x 
Serial x x x 
Approximate entropy   x 
Cumulative sums (cusum) x x x 
Random excursions x x x 
Random excursions variants   x 
Number of Tests 6 10 15 

Table 4.2 Prioritisation of the NIST Tests 

 
Tier 1 contains seven tests and it is suggested that they pick up the most important type of non-
randomness. 
Tier 2 encompasses three more tests than tier one. The rationale behind why these four tests do not 
feature in Tier 1 is: 
 

Binary Matrix: Linear dependence seems to the author a bizarre feature to detect 
Linear Complexity: It is mostly for practical reasons that this test does not feature in the Tier 1 

list; it takes computationally intense, taking over 2 hours to run through on 
an ordinary PC9. 

Maurer: Known to have a low power. 
 
Tier 3 encompasses five more tests than Tier 2 and is the full NIST statistical test suite. That rationale 
behind why these five tests do not feature in higher tiers is: 
 
Frequency (monobit): Similar to the frequency block test. Also, if this test is failed 

then other tests will definitely fail so there is perhaps a 
redundancy in applying it. 

Runs: Similar to the longest run within a block test in Tier 1. 
Overlapping template matching: Similar to the non-overlap test in Tier 1. 
Approximate entropy: This test is very similar to the serial test. They seem to only 

differ in the test statistic which they calculate. 
Random excursions variants: Similar to random excursions test in Tier 1. 
                                                 
9 NIST also note that the Linear Complexity test is the most time-consuming statistical test to run. (And so this 
suggests that it is not just poor coding 
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How valid these three tiers are is subject to further analysis; the prioritisation is based predominantly on 
the experience of the author (over the past few months). There is a reference in the literature to the 
Information Technology Promotion Agency in Japan selecting a minimum set of tests from the NIST suite 
to include Frequency test within a block, Longest run of ones in a block, linear complexity, serial, 
cumulative sums. [23] The documentation of this was not identified. The minimum set chosen however is 
quite consistent to what the author has prioritised as tier 1. 
 
 
4.2 Methodology 
 
4.2.1 Which numbers should be tested? 
 
As already reasoned in Section 3.1 it is desirable both from a philosophical and mathematical point of 
view that binary numbers be tested. The tests should not be run on the same set of numbers but rather 
on independent sets of numbers. This means that the results of each test can be deemed to be 
independent. NIST does not explicitly deal with this issue. 
 
4.2.2 Multiple testing? 
 
The ideal is to have some test which will indicate whether some accumulation of sequences is completely 
random. The best that any test can offer, however, is the probability of getting such an accumulation 
under whatever assumptions are made. That is, there is always a valid possibility, no matter how small, 
that even very peculiar accumulations of strings of numbers could have occurred by chance. As is noted 
in the statistics world, “p happens”, meaning that sometimes a RNG that is in fact completely random will 
fail a test (Type I error). And so it is unwise to reject outrightly a generator on the basis of the results from 
one hypothesis test. If “p happens” then the RNG should be judged a suspect of departing from true 
randomness and further testing should be done. NIST suggests that the tests be ran multiple times; 
taking the number of runs to be x, where x is at least the inverse of the significance level, α . As the 
significance level for all tests is 0.01 (see Section 4.2.4) this suggests running each test 100 times. 
Despite NIST recommendations, multiple testing in the context of hypothesis testing seems not to have a 
solid statistical basis. Classically one test is conducted on the data. It is suggested that chance peculiar 
accumulations of numbers do not have an effect if enough data is used in the test and so this multiple 
testing basically tells nothing more than running the test once. Nevertheless, the NIST suite is the 
standard and is adhered to in the evaluation of Random.org and comparatives. When the tests are ran 
daily on Random.org, however, it is sufficient to adhere to the classical approach of conducting one test, 
baring in mind that “p happens”. 
 
4.2.3 Input Sizes 
 
Practically a sample output sequence of the RNG is subjected to various statistical tests.  The 
determination as to how long this sample output be for the purposes of statistical testing is difficult to 
address and, with no definitive rules on how many numbers should be tested, there is a certain amount of 
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arbitrariness involved. It is important to realise that not each test necessarily has to be applied to the 
same amount of numbers. Indeed different tests are suited to different input sizes. 
 
NIST gives recommended minimum input sizes though do not specify a maximum. Random numbers are 
cheap in the sense that they are easily generated. For this reason there is perhaps a temptation to run 
tests on a large amount of numbers even though this tells nothing extra. The minimum input sizes that 
NIST recommends are chosen. These along with other parameters details are in Appendix L. 
 
NIST notes that for many tests, the length of the sequence n is large (of the order 610 ). For such large 
sample sizes of n, asymptotic reference distributions have been derived and applied to carry out the tests. 
Most of the tests are applicable for smaller values of n. However, if used for smaller values of n, the 
asymptotic reference distribution might be inappropriate and would need to be replaced by exact 
distributions that would commonly be difficult to compute. This varies from test to test. 
 
4.2.4 Pass/Fail Criteria 
 
The pass/fail criteria of the testing revolves around the significance level,α . If the p-value of the test is 
less than α , then the RNG fails the test, otherwise the test is passed. If the RNG under inspection fails 
any one of the tests in the suite then it should not be accepted as random. This is because every test is 
detecting a different type of randomness. NIST recommends that a 0.01 significance level be used for all 
tests. Suppose that each of the 15 tests in the suite result in one p-value. Because each of the 15 tests in 
the suite is applied to a different set of numbers, it should be the case that %01.8699.0 15 = of 
completely random RNGs pass the test. The fact that some completely random RNG fail is referred to as 
a type I error. Intuitively it makes sense perhaps to lower the significance to say 0.05. This would mean 
that it is more difficult to pass the test thus capturing the “bad” generators more easily. The problem with 
this is that it also makes if more difficult for a “good” generator to pass. Appendix G shows the 
significance level and the associated pass rates if the generator is indeed completely random. For 
example, if a significance level of 0.05 is taken then a “good” generator will only pass 46.33% of the time. 
This means that a lot of good generators can be rejected if the significance level is not chosen with care. 
 
Some of the tests in the NIST suite result in more than one p-value, namely the Serial, Cumulative sums, 
Excursions and Excursions Variant tests. It is unclear from the NIST documentation as to how these 
should be treated. For instance, the Excursions Variant test outputs 18 p-values. Should all 18 p-values 
be looked at? This would mean putting unequal weightings on the tests. If all the resulting p-values were 
examined there would be 41 per suite test. This means that there is less than the aforementioned 86% 
chance that a perfectly random RNG will pass the suite (because of the dependence of some p-values it 
is not possible to calculate the exact pass rate percentage). This 86% is already rather low. In the 
description of the tests NIST advise rejecting the generator if any of the p-values are unacceptable while 
further in the document 15 p-values are referred to suggesting that there is 1 p-value from every test.10 

                                                 
10 What NIST might have done to get 15 p-values is taken the lowest p-value on the basis that the following is true: 

))(),(min()( BPAPBAP ∈∩  This, however, is just speculation. 
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This lack of clarity is an annoyance when every effort is made to stick to the test suite as closely as 
possible. It is decided, for completeness sake, to look at all 41 p-values.  
 
The blanket significance level of 0.01 does not take into account the issue of power-versus-size, as 
discussed further in section 6. Each test has a different power and a different significance level and using 
a blanket significance level is not very efficient. Although not satisfactory, the NIST recommendation is 
adhered to because ultimately it is desired that a statement be made saying whether or not Random.org 
passed the NIST statistical test suite. Such a statement cannot be made if departures are made from the 
NIST recommendations.  
 
The problem with the fail/pass decision approach employed by NIST is that much relevant information is 
discarded. For example, how close a fail or pass the sequence was. It seems that a more flexible 
approach is needed. Ultimately the pass/fail criteria should depend on the application. 
 
4.2.4.1 Proportion of sequences passing the test 
 
According to NIST suite the range, or confidence interval, of acceptable pass rates (where the pass rate 
is defined to be the proportion of times that a generator passes a particular test) needs to be determined. 
NIST use the normal distribution as an approximation to the binomial distribution. This is only applicable 
to large sample sizes. The general rule of thumb is that if npq>5 (where n=number in sample, 
p=probability of success and q=1-p=probability of failure) then the normal approximation can be used to 
develop a confidence interval for a binomial variable. This essentially approximates a discrete distribution 
with a continuous distribution. This is not applicable here. A sample size of at least 506 would be 
needed11 but this project is only taking a sample size of 100. And so, instead the confidence interval is 
calculated by the modified Wald method. [24,25] The 99% confidence interval extends from 0.8995 to 1, 
meaning that any proportions that fall within this range are acceptable. This range, of course, could be 
narrowed by taking a larger sample size. 
 
4.2.4.2 Uniform Distribution of p-values 
 
It is not sufficient to look solely at the acceptance rates and declare that the generator be random if they 
seem fine. If the test sequences are truly random, the p-values calculated are expected to appear uniform 
in )1,0[ . This needs to be checked. NIST recommends to conduct a chi-square test on the p-values, 

dividing the interval 0-1 into 10 sub-intervals. This tests the uniformity of the p-values. The degree is 
freedom is 9 in this case. Define iF  as the number of occurrences of the p-value in the i-th interval, then 

2χ statistic is 
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NIST recommends its significance level as 0.01% (i.e. 0.0001). Therefore the acceptance region of 
statistics is 725.332 ≤χ . This type of failure occurs when a generator fails in an inconsistent way. A 

generator can pass a type of test often enough to avoid being declared proportionally flawed, but be 
declared a uniformity failure due to otherwise inconsistent behavior. For example, having a few 
spectacular failures occur could produce a uniformity failure declaration. A generator that experiences 
periods of poor statistical performance between periods of otherwise excellent statistical performance 
would likely be declared a uniformity failure. A completely random RNG is classified as a generator 
without any proportional or uniformity flaws. 
 
What has been described here is a recommendation of the NIST statistical test suite. However, 
statisticians may very well object to this on the grounds that it is testing the same thing multiple times. It 
seems that numbers are being ground through the mill again and again reducing the whole analysis to a 
single number. How this number can be interpreted at the end of this process is questionable.  
 
What may be more useful is to plot the p-values in a chart over time and examine them graphically (see 
Appendix O). 
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5. RESULTS OF TESTING 
 
This chapter briefly discusses the results of the NIST test suite on numbers generated by Random.org 
and the chosen comparative generators. Appendix N gives the details of the results and a further 
discussion. 
(Note: the results are available in spreadsheet format on the CD that is attached to the inside of the back cover of the report) 

 
Random.org passes the tests in terms of pass rates, where the pass rate is the proportion of times that 
Random.org passes a particular individual test. All pass rates are well above the lower bound of 89.95% 
as calculated in Section 4.2.4.1. These are shown in Table N1 of Appendix N. The distribution of p-values 
is deemed to be uniform by the method described in Section 4.2.4.2. A visualisation of the distribution of 
p-values for each test is shown in Appendix N also. It can now justifiably be claimed that Random.org 
passes the NIST suite of statistical tests. 
 
It is worth bearing in mind that if a generator results in one or more significant p-values across all tests 
then the null hypothesis is rejected. So while all the individual pass rates are quite high, it was found that 
Random.org passed the suite 68% of the time (based on 100 runs). This may seem quite low but 
remember that “p-happens” meaning that a “good” RNG will fail an individual test with probability alpha. 
41 p-values must be above 0.01 so while there is no way to calculate the expected overall suite pass rate 
(because of the dependence between some p-values) this 68% sounds reasonable. 
 
Perhaps what is more insightful is a comparison of Random.org with other generators. The comparative 
PRNGs that have been chosen are the Microsoft Excel RNG, which is commonly used tool in almost 
every field and the Minitab12 [26] RNG, which is frequently used in statistics. The comparative TRNGs that 
have been chosen are Hotbits [27] and Randomnumbers.info [11]. How the numbers are generated by 
these generators, as well as Random.org, is detailed in Appendix M. 
 
While Random.org and the PRNGs were subjected to the each test 100 times, the TRNGs were 
subjected to each test only once for practical reasons (see Appendix C).  
 
Appendix N shows the detailed results of the testing.  Like Random.org, Minitab passed the test suite. 
Excel’s pass rates were satisfactory but the resulting p-values were lacking uniformity in two of the tests 
and so Excel fails the suite. Of the other two TRNGs, Hotbits passed the suite but Randomnumbers.info 
failed two of the tests.  
 
For the generators that passed the tests one cannot be considered better than the other. They all meet 
the requirements of the NIST statistical test suite. 

                                                 
12 Minitab is a statistical software package 
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6. OPEN ISSUES 
 
This chapter deals with some open, mainly statistical, issues that need consideration that goes 
beyond the scope of the project. 
 
6.1 Evaluation of the Test Suite 
 
Essentially the next three sections are saying that the actual test suite needs evaluation 
What is hopefully obvious from the issues raised in the preceding chapters is that the test suite 
needs to be evaluated. This section briefly discusses three specific unresolved issues that ought 
to get attention from the academic community. 
 
6.1.1 Power of Tests  
 
The significance level of a test is the probability that a type I error is made. A type I error is made 
when the statistical test classifies a “good” RNG as “bad”. The power of a test is the probability 
that a type II error is not made. A type II error is made when a statistical test classifies a “bad” 
RNG as “good”. The higher the power, the better.  
 
In this context it is desirable to have high power against all possible alternatives.  It is not so 
important to have a low significance level - The consequence of a “bad” generator being 
classified as “good” is worse than a “good” generator being classified as “bad” (in most 
applications). The latter results in merely a loss in efficiency of the testing procedure whereas the 
former can have detrimental effects on the application. For example, for a cryptographic purpose 
it could mean a potential exposure of the data intended to be encrypted and for a simulation it 
could mean that the results are distorted. And so, the power of the test certainly does not want to 
be compromised. On the other hand, rejecting perfectly acceptable generators is not desirable 
either. A balance has to be made between the two types of errors. The only way to achieve high 
enough power is to use large enough samples. 
 
Power depends on the test type (what type of departure is being tested for), the extent of that 
departure and the sample size. Each statistical test should have their own power and therefore an 
appropriate significance level and input size should not be the same for every test. The power of 
the NIST tests does not seem to be not documented. What power is adequate depends on the 
extent of departure that can be tolerated; this leads back to the application once again.  
 
Bayesian methods may be a technique to approach this problem. This, unfortunately, was an 
avenue that could not be explored due to the time constraints of this project. Although, given what 
has been done in this project it would now be feasible. 
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6.1.2 Independence and Coverage of tests 
 
The issue of the independence of the statistical tests, whether or not there is any redundancy in 
applying more test than are indeed necessary has been broached by NIST. The coverage or 
span of the statistical tests seeks to address the problem of how many distinct types of non-
randomness can be investigated, and to assess whether or not there are a sufficient number of 
statistical tests to detect any deviation from randomness. To address this problem research is 
underway which involves the application of principal components analysis and comprehensive 
coverage of tests have also been considered. NIST say that the results look promising. [9,51] It is 
not possible to go through the details of this work because they are not available. However, using 
principal components analysis, which assumes linearity, to look at p-values, if that is what they 
are doing, seems awkward because p-values are not linear. It will be impossible to ever declare 
that the tests detect infinite amount of non-randomness that could exist. The best that can be 
hoped for is that they detect the important types of non-randomness, where the importance 
effectively depends on the application. 
 
6.1.3 Interpretation of Results 
 
NIST report that “it is up to the tester to determine the correct interpretation of the test results”. 
Considering that NIST designed the test this is not terribly helpful advice nor is it adequate. There 
are probably more people from a non-statistical background that use random numbers than those 
from a statistical background and some clear guidance does need to be given in the interpretation 
of results. 
 
6.2 Application Based Testing 
 
Section 3.4 mentions application based testing as a method to test the performance of a 
particular RNG. Passing many statistical tests is never a sufficient condition for the use of a RNG 
in all applications. In other words, in addition to standard tests such as the NIST suite, application 
specific tests are also needed. To test whether a RNG is good enough for a gaming application, 
for example, a trial could be set up in which individuals, or more likely learning software, would 
collect useful statistics for a period. Neural nets could then perhaps be used to discover good 
betting strategies. The decision criteria to accept the generator would be that if the average loses 
are less than the theoretically calculable expected loss. To test whether a RNG is good enough 
for a cryptographic application encrypt some data and then try to break the code. Of course, this 
kind of an approach is not practical if testing a multi-purpose generator like Random.org from the 
supplier end. However, for a user of Random.org with a particular application this is the 
recommended approach where possible. 
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A. ORIGINAL PROJECT GUIDELINES 
 
Client:  Distributed Systems Group, Computing Science Dept., Trinity College 
Project:    On-line statistical analysis of a true random number generator 
Location: Distributed Systems Group, Computer Science, O’Reilly Institute 
Client Contact: Mads Haahr, Mads.Haahr@cs.tcd.ie, phone (01) 608 1543 
Dept. Contact: Simon Wilson 
 
Client Background 
The Distributed Systems Group (http://www.dsg.cs.tcd.ie/) is one of the research groups in the 
Computer Science Department. It conducts research in many different areas of distributed 
computing. 
 
Project Background 
The Distributed Systems Group is operating a public true random number service 
(http://www.random.org) which generates true randomness based on atmospheric noise. The 
numbers are currently made available via a web server. Since it went online in October 1998, 
Random.org has served nearly 10 billion random bits to a variety of users. Its popularity is 
currently on the rise and at the moment the web site receives approximately 1000 hits per day. 
The group is concerned to verify that the output of its random number service can truly be 
considered “random”. 
 
Client Requirement 
The objectives of this project are first to implement a suite of statistical tests for randomness on 
the output of this stream. These are to be implemented using a statistical package, Excel, or, if 
the student wants, by writing code. Then, a comparison should be made with other ‘true’ random 
number generators and with some of the more usual ‘pseudo’ random generation algorithms. The 
second part of the project involves integrating the test functionality with the random.org number 
generator. This may involve managing a database containing the numbers generated (or, 
possibly, a summary of the numbers) and linking an analysis of the database to the web for users 
of the service. 
 
What is involved for the student? 
Clearly the first part of this project is overwhelmingly statistical in nature. A survey of suitable 
statistical tests will have to be made, and then the tests implemented, using a statistical package, 
Excel or through writing code explicitly. The second part of the project involves managing a 
database (the numbers generated) and linking an analysis of the database to the web for users of 
the service.
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B. INTERIM REPORT 
 
Management Science and Information Systems Studies 
 
Project: Statistical Analysis of a True Random Number Generator 
Client: Mads Haahr, Distributed Systems Group, Computer Science Department, Trinity College 
Student: Charmaine Kenny 
Supervisor: Kris Mosurski  
 
Review of Background and Work to Date 
The Distributed Systems Group (DSG) is a research group in the Department of Computer 
Science in Trinity College Dublin. They conduct basic and applied research into all aspects of 
distributed computing. The primary objective of this project is to analyse their on-line random 
number generator. The generator uses atmospheric noise to produce random numbers. It is 
freely available at www.random.org. 
 
To date, familiarity with the random.org website has been established. Research into the 
definition of random numbers and different types of randomness has begun. The applications of 
random numbers have also been overviewed. Preliminary work on understanding common tests 
has started. A good number of academic papers pertaining to the topic of random numbers and 
testing random number generators have been ascertained as well as useful websites and 
relevant text books. Some available statistical test suites for random number generation have 
also been identified. 
 
Terms of Reference  
• To conduct a literature review of the applications of random number generators and to 

contrast the use of random number generators and pseudo random number generators; 
• To research statistical tests that detect non-randomness, review statistical test suites 

available, and then propose a set of statistical tests to be applied to the numbers generated 
by random.org; 

• To consider other random number generators as possible comparative studies and compare 
random.org to a selection of these: 

• To define, prioritise and spec the efficiency of the implementation of the proposed suite. 
 
Further Work 
Micro-deadlines have been constructed to ensure the momentum of the project does not ease. 
The target schedule for the project is detailed in Figure 1. 
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Applications of random numbers
RNG -V- PRNG

Research tests & test suites available

Select the tests to use
Structure the tests in computer
package
Run tests on random.org
Choose comparative generators

Run tests on other RNGs
Compare random.org with other
RNGs
Prioritise tests

Miscellaneous Work
Begin drafting of the report

Proofread and prepare the report

Submit report

Detailed Project Schedule

PROJECT STEPS Dec Jan Feb Mar Apr

 
Figure 1 
 
Conclusions 
While the drawing of conclusions at this preliminary stage is resisted, a number of things have 
already become clearer as a result of work carried out to date, among them: 
 
The scope of the project, as defined by the terms of reference, has been clearly set out. It is 
important to note that the project does not entail the implementation of the proposed statistical 
test suite on-line but that the work involved with this project is a huge step towards achieving this.  
 
Finally, it is recognized that the project is doable given the inherent constraints (which mainly 
involve time). 
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C.  DIFFICULTIES ENCOUNTERED 
 
Although the terms of reference have largely been fulfilled there were a number of difficulties 
encountered in their fulfilment. 
 
The difficulty in programming the statistical tests and therefore the time required to do so was 
underestimated. Errors in the NIST manual, which describes the tests, further delayed the 
process (Appendix J documents these errors). Running the tests was also a lengthy and 
laborious task. One test in particular proved to be awkward – the Linear Complexity Test. This is 
a computationally intense test, taking over two hours to run on a college PC. The NIST 
developers of the test suite also note that it is the most time-consuming test to run and so this 
lengthy run-time it is not just a product of the author’s inefficient coding! Priority was given to 
Random.org but the test was not run 100 times for all of the comparative generators (Minitab was 
only subjected to the Linear Complexity test 26 times). 
 
It was anticipated that a comparison be made between Random.org and some pseudo and true 
random number generators. There was awkwardness in getting output from the latter to test. 
While there is indeed a number of online true random number generators that provide a free 
service, there are restrictions on the amount of numbers that can be downloaded. These 
restrictions meant that the ~5.5 million numbers needed to run through the recommended suite 
would have taken far too long to generate. For this reason the true random number generator 
comparisons were ran through the suite of tests just once (which is consistent with hypothesis 
testing anyway) as opposed to 100 times, as with Random.org and the pseudo random number 
generator comparatives. 
 
In the earlier days of researching the project it was very easy to get lost in the literature. Because 
the use of random numbers spans across many different fields the literature was vast if not 
always relevant. The different fields of random number work do not seem to converge very often 
in the literature. It is unfortunate that relevant work is published in so many journals in so many 
fields; it makes for difficulty in keeping track of new developments and it also enables many 
outdated methods to get in print. It perhaps also shades scope for different fields to learn from 
each other; it certainly makes it more difficult. 
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D. TYPES OF PRNGs 
 
Pseudo random number generators (PRNGs) use an algorithm to produce sequences of random 
numbers. Common classes of algorithms are linear congruential generators, lagged Fibonacci 
generators, linear feedback shift registers and generalised feedback shift registers. Recent 
instances of algorithms include Blum Blum Shub and the Mersenne Twister.  
 
Linear Congruential Generators 
 
Linear congruential generators (LCGs) represent one of the oldest and best-known 
pseudorandom number generator algorithms. The theory behind them is easy to understand, and 
they are easily implemented and fast. It is, however, well known that the properties of this class of 
generator are far from ideal. LCGs are defined by the recurrence relation: 

)(mod1 MBVAV jj +×≡+ , where Vn is the sequence of random values and A, B and M are 

generator-specific constants.  
 
The period of a general LCG is at most M, and very often less than that. In addition, they tend to 
exhibit severe defects. For instance, if an LCG is used to choose points in an n-dimensional 
space, triples of points will lie on, at most, M1/n hyperplanes. This is due to serial correlation 
between successive values of the sequence Vn. A further problem with LCGs is that the lower-
order bits of the generated sequence have a far shorter period than the sequence as a whole if M 
is set to a power of 2. In general, the nth least significant digit in the base m representation of the 
output sequence, where mk = M for some integer k, repeats with at most period mn. 
 
Today, with the advent of the Mersenne twister, which both runs faster than and generates 
higher-quality deviates than almost any LCG, only LCGs with M equal to a power of 2, most often 
M = 232 or M = 264, make sense at all. These are the fastest-evaluated of all random number 
generators; a common Mersenne twister implementation uses it to generate seed data.  
 
LCGs should not be used for applications where high-quality randomness is critical. For example, 
it is not suitable for a Monte Carlo simulation because of the serial correlation (among other 
things). Nevertheless, LCGs may be the only option in some cases. For instance, in an 
embedded system, the amount of memory available is often very severely limited. Similarly, in an 
environment such as a video game console taking a small number of high-order bits of an LCG 
may well suffice. 
 
Lagged Fibonacci Generators 
 
The lagged Fibonacci generator (LFG) class of random number generator is aims to be an 
improvement on the 'standard' linear congruential generator. These are based on a generalisation 
of the Fibonacci sequence. The Fibonacci sequence may be described by the recurrence relation: 

Sn = Sn-1 + Sn-2 
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Hence, the new term is the sum of the last two terms in the sequence. This can be generalised to 
the sequence: 

Sn = Sn-j (*) Sn-k (mod M), 0 < j < k 
 
In which case, the new term is some combination of any two previous terms. M is usually a power 
of 2, often 232 or 264. The (*) operator denotes a general binary operation. This may be either 
addition, subtraction, multiplication, or the bitwise arithmetic exclusive-or operator. The theory of 
this type of generator is rather complex, and it may not be sufficient simply to choose random 
values for j and k. These generators also tend to be very sensitive to initialisation. Generators of 
this type employ k words of state (they 'remember' the last k values). If the operation used is 
addition, then the generator is described as an Additive Lagged Fibonacci Generator or ALFG, if 
multiplication is used, it is a Multiplicative Lagged Fibonacci Generator or MLFG, and if the 
exclusive-or operation is used, it is called a Two-tap Generalised Shift Feedback Register or 
GFSR. The Mersenne twister algorithm, which is discussed further on, is a variation on a GFSR. 
 
Lagged Fibonacci generators have a maximum period of (2k - 1)*2M-1 if addition or exclusive-or 
operations are used to combine the previous values. If, on the other hand, multiplication is used, 
the maximum period is (2k - 1)*2M-3, or ¼ of period of the additive case. For the generator to 
achieve this maximum period, the polynomial: 

y = xk + xj + 1  
must be primitive over the integers mod 2. Values of j and k satisfying this constraint have been 
published in the literature. Popular pairs are: {j = 7, k = 10}, {j = 5, k = 17}, {j = 24, k = 55}, {j = 65, 
k = 71}, {j = 128, k = 159}.  It is required that at least one of the first k values chosen to initialise 
the generator be odd. 
 
There are a number of problems with LFGs. Firstly, the initialisation of LFGs is a very complex; 
any maximum period LFG has a large number of possible cycles, all different. Choosing a cycle is 
possible, but methods for doing this may endanger the randomness of subsequent outputs. 
Secondly, the output of LFGs is very sensitive to initial conditions, and statistical defects may 
appear initially but also periodically in the output sequence unless extreme care is taken. Another 
potential problem with LFGs is that the mathematical theory behind them is incomplete, making it 
necessary to rely on statistical tests rather than theoretical performance. These reasons, 
combined with the existence of the free and very high-quality Mersenne twister algorithm tend to 
make 'home-brewed' implementations of LFGs less than desirable in the presence of superior 
alternatives. 

Linear Feedback Shift Register Generators 

A linear feedback shift register is a shift register whose input is the exclusive-or of some of its 
outputs. The outputs that influence the input are called taps. A maximal LFSR produces an n-
sequence, unless it contains all zeros. The tap sequence of an LFSR can be represented as a 
polynomial mod 2 - called the feedback polynomial. For example, if the taps are at positions 17 



 
 

  D.3   

and 15 (as below), the polynomial is x17 + x15 + 1. If this polynomial is primitive, then the LFSR 
is maximal. 

 

LFSRs can be implemented in hardware, and this makes them useful in applications that require 
very fast generation of a pseudo-random sequence, such as direct-sequence spread spectrum 
radio. Given an output sequence you can construct a LFSR of minimal size by using the 
Berlekamp-Massey algorithm. [30] 

LFSRs have long been used as a pseudo-random number generator for use in stream ciphers 
(especially in military cryptography), due to the ease of construction from simple 
electromechanical or electronic circuits, long periods, and very uniformly distributed outputs. 
However the outputs of LFSRs are completely linear, leading to fairly easy cryptanalysis. Three 
general methods are employed to reduce this problem in LFSR based stream ciphers: 

• Non-linear combination of several bits from the LFSR state;  
• Non-linear combination of the outputs of two or more LFSRs; or  
• Irregular clocking of the LFSR.  

Other PRNGs 

Blum Blum Shub (BBS) is a pseudorandom number generator proposed in 1986 by Lenore Blum, 
Manuel Blum and Michael Shub which gained a lot of recognition in the field of cryptographic. 
Much has been written about this generator [31,32]. 

The Mersenne twister is a pseudorandom number generator that was developed in 1997 by 
Makoto Matsumoto (松本 眞) and Takuji Nishimura (西村 拓士). It provides for fast generation of 
very high quality random numbers, having been designed specifically to rectify many of the flaws 
found in older algorithms [33]. 

Note that the descriptions above are largely sourced from www.answers.com [34]. Other 
interesting background reading on PRNGs is Knuth [5], Ripley [35], Vattulainen [13] and Menezes 
et al. [8]. 
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E. HYPOTHESIS TESTING 
 
This appendix supplements the brief discussion of hypothesis testing in Section 3.4 in the main 
body of the report. It is particularly useful for the reader who does not have a background in 
statistics. 
 
The framework adopted to test the random number generators is based on hypothesis testing. A 
hypothesis test is a procedure for determining if an assertion about a characteristic of a 
population is reasonable. In this case, the test involves determining whether or not a specific 
sample sequence of zeroes and ones is random. Practically, only a sample output sequence of 
the RNG is subjected to various statistical tests. 
 
Table E.1 lists some terminology associated with hypothesis testing that is needs to be defined 
for the unfamiliar reader.  
 
Term Definition 
Test statistic A statistic upon which a test of a hypothesis is based. For example, 

in this project the chi-square statistic is the test statistic for many of 
the tests. 

Null hypothesis The stated hypothesis. In this case, the null hypothesis is that a 
binary sequence is random from a statistical viewpoint. 

Alternative hypothesis The alternative to the null hypothesis. In this case it is any non-
random characteristic. 

Significance level Usually denoted as, alpha (α ), it is the least upper bound of the 
probability of an error of type I for all distributions consistent with 
the null hypothesis. The significance level is also referred to as the 
“size” of the test. 

Type I error The likelihood that a test rejects a binary sequence that was, in fact, 
produced by an acceptable random number generator. 

Type II error The likelihood that a test accepts a binary sequence that was, in 
fact, produced by an unacceptable random number generator. 

Confidence interval An interval which is believed, with a pre-assigned degree of 
confidence, to include the particular value of some parameter being 
estimated. 

p-value A measure of the strength of the evidence provided by the data 
against the hypothesis. 

Critical Value A “look up” or calculated value of a test statistic that, by 
construction, has a small probability of occurring when the null 
hypothesis is true. 

 
E.1 Statistical Hypothesis Testing [28]  
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For each test, a relevant statistic must be chosen and used to determine the acceptance or 
rejection of the null hypothesis. Under an assumption of randomness, such a statistic has a 
distribution of possible values. A theoretical reference distribution of this statistic under the null 
hypothesis is determined by mathematical methods. From this reference distribution, a critical 
value is determined (typically, this value is “far out” in the tails of the distribution). During a test, a 
test statistic value is computed on the data (the sequence being tested). The test statistic value is 
used to compute a p-value. If a p-value for a test is determined to be equal to 1, then the 
sequence appears to have perfect randomness. A p-value of zero indicates that the sequence 
appears to be completely non-random. A significance level (alpha) is chosen for the tests. In this 
project the significance level or size is taken to be 0.01 for each test. The significance level of the 
test is the probability of rejecting the null hypothesis when it is true. If alpha>0.01, then the 
hypothesis is accepted, i.e., the sequence would be considered to be random with a confidence 
1-alpha. If alpha<0.05, then the hypothesis is rejected, i.e., the sequence would be considered to 
be non-random with a confidence 1-alpha. [6] 
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F. TESTS WITHIN EACH SUITE 
 
Table F.1 shows that tests that are within each of the suites described in Section 3.5 of the main 
body of the report. Efforts have been made to display the overlap between the test suites but the 
difficulty in compiling such a table is that the same test often has many different names and there 
are also many variations of what is essentially the same test.  
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  Knuth Diehard Crypt-X NIST ENT 
Previous 

MSISS 
  [5] [19] [20] [6] [3] [2] 
Frequency  1  1 1   
Serial 1   1   
Gap 1      
Poker/Partition 1      
Coupon Collector's 1      
Permutation 1      
Runs 1 1 1 1  1 
Maximum-of-t 1      
Collision 1      
Birthday Spacings 1 1     
Serial Correlation 1    1  
Tests on Subsequences 1      
Overlapping Permutations  1     
Binary rank test for 32x32 matrices  1  1  1 
Ranks of 6x8 matrices  1     
Monkey tests on 20-bit words  1     
Monkey tests OPSO, OQSO, DNA  1     
Count the 1's in a stream of bytes  1     
Count the 1's in specific bytes  1     
Parking lot  1     
Minimum distance  1     
Random spheres  1     
Squeeze  1     
Overlapping Sums  1    1 
Craps  1     
Binary Derivative   1    
Change Point   1    
Sequence Complexity   1    
Linear Complexity   1 1   
Frequency test within a block    1   
Longest run of 1’s in a block    1   
Discrete fourier transform (spectral)    1   
Non-overlapping template matching    1   
Overlapping template matching    1   
Maurer's universal statistical    1   
Approximate Entropy    1 1  
Cumulative sums (cusum)    1   
Random Excursions    1   
Random Excursions Variants    1   
Chi-square     1 1 
Arithmetic Mean     1  
Monte Carlo Value for Pi     1  
Reverse arrangements      1 
Number of tests in suite 12 15 6 15 5 5 

 
F.1 Tests within each suite
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G. SIGNIFICANCE LEVEL 
 
Table G.1 shows the expected pass rates of RNGs that are completely random for various 
significance levels, given that 15 p-values result from the test suite and that the tests are carried 
out on independent samples. The pass rate in this case is 15)1( α− , where α is the significance 

level. The table illustrates the point being made in Section 4.2.4 of the report that the pass rate 
decreases quite rapidly for small changes in the significance level and that using what may seem 
like a reasonable significance level could mean rejecting a large proportion of “good” RNGs. 
 

Significance 
Level Pass Rate 
0.005 92.76% 
0.010 86.01% 
0.015 79.72% 
0.020 73.86% 
0.025 68.40% 
0.030 63.33% 
0.035 58.60% 
0.040 54.21% 
0.045 50.12% 
0.050 46.33% 

    

G.1 Significance Level –V- Pass Rates 
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H. CODE DOCUMENTATION 
 
This appendix addresses what language the tests were coded in and why. It gives a brief 
technical commentary on the specifics of what is needed within the language environment. It also 
deals with code comments, the set-up of the code, error-checking and debugging. 

Note: a disc with the Excel file is attached to the inside of the back cover of the project report.  

Coding Language 
 
Contrary to the original project guidelines the client did not require that the author code the tests 
for integration with his server. After consultation with the client it was decided to code the test 
using Excel. The advantages and limitations of this decision are outlined below: 
 
Advantages 
• The forte of the author is not programming but the author is a competent user of Excel and 

VBA.  
• The Excel-VBA set-up provides excellent and easy to understand pseudo-code for the client 

when he starts to program the tests to be uploaded onto his server. 
• Excel-VBA is simple for non-programmers to understand. 
• By coding the tests from scratch a grasp of exactly what the test procedures entailed was 

gained. 
 
Disadvantages 
• Excel-VBA does not have all the functionality that a language like C or even an application 

like Matlab has. For example the calculation of the rank of a binary matrix had to be written 
from scratch. This was a little cumbersome and took time. 

• Excel has only 65536216 =  rows. This minor nuisance was easily surmountable. 
• The Excel file is quite large which perhaps puts is at a risk of crashing. This, however, 

happened rarely. 
• Excel is platform dependent, working only on Windows and Macintosh machines.  
• Excel cannot be used to link directly to the web. 
 

Language Environment 

A number of Excel’s built-in functions are used in the calculation of the p-values for tests. At least 
two of these functions are not available in Excel unless the Analysis ToolPak add-in has been 
installed. Specifically, the two functions are RANDBETWEEN(a,b) (used to generate a random 
integer between 0 and 1) and ERFC(x) (used to calculate the complementary ERF function 

integrated between x and infinity )(12)(
2

xerfdte
x

xerfc
x

t −== ∫
∞ − ). 
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If these functions are not available (Excel returns the “#NAME?” error) install and load the 
Analysis ToolPak add-in by carrying out the following steps: 

• On the Tools menu, click ‘Add-Ins’.  
• In the ‘Add-Ins available’ list, select the ‘Analysis ToolPak’ box, and then click OK. 
• If necessary, follow the instructions in the setup program.  

The NIST manual refers to a function called igamc which is related is related to the chidist 

function of Excel. The relationship is ),()
2

,
2

( 2
2

dfchidistdfigamc χχ
= . The chi-square 

distribution is a special case of the more general gamma distribution. 

 

Code comments 

The code has been commented extensively to aid the reader in comprehension. A detailed 
description of each of the tests is given in Appendix K which is a type of pseudo-code should the 
reader wish to clarify. Perhaps the best way to understand the code is to read this simultaneously 
i.e. the comments in the code and description of the tests. 

 

Set-up 

For the purposes of Excel the code has been set up such that it deals with numbers formatted in 
20 numbers in each row. For example, if 100 numbers are needed for a test then there should be 
20 columns of numbers with 5 in each column. The reason for this is because Excel can only 
accommodate 2^16 i.e.65536 rows and 2^8 i.e. 256 columns.  

The user can paste the data, in the correct format, into the worksheet called “Data” in the excel 
file. The user should then click on the “Display” worksheet and click on the appropriate button run 
the desired test. 

The code does not run the suite of tests on the numbers simultaneously because there is a high 
chance of an error occurring – it would have to deal with almost ~5.5 million numbers. In any 
case this interactive approach is more conducive to understanding the how the tests work. 
Furthermore, it takes quite some time to run all the tests one after the other (the linear complexity 
test takes over two hours to run on a normal machine). Having said that, the code is flexible 
enough that it can be set up to apply the suite all at once. 
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The default setting is that when a test is ran once when chosen. The number of times that a test 
can be ran can easily be changed by going to the display page in the visual basic editor and 
changing the run time as appropriate. 

For the tests that require small amount of numbers the data can be formatted in the usual 20-per-
row. For the tests that require larger amounts of random numbers, i.e. >300,000, the code can 
only cater for running between five and ten tests if the data is placed side by side but this must be 
explicitly be taken account of in the code by again changing the run time. 

Remember that different numbers should be used for each test (see Section 4.2 in the main body 
of the report). 

The tests as programmed by NIST are available for download from their website at 
http://csrc.nist.gov/rng/rng2.html. This was not used in the project because it was desired to get a 
firm understanding of what exactly the tests do instead of taking a black-box approach. The NIST 
test code was developed in ANSI C. The accuracy of this code cannot be commented upon but 
the author has reservations about using it as it is. The number of mistakes found in the NIST 
manual does not instill confidence. See appendix J for details of these mistakes and 
corresponding corrections. Indeed it might be possible to test the NIST code by using the Excel-
VBA code written for this project.  

Debugging and error checking 

Every effort has been made to debug the project given the time constraints. For example the 
binary matrix code has been cross-checked with MatLab, the mini-examples in the manual have 
been ran through the code to verify that the same answers are calculated, etc 

It is recognised that the code needs some revision to make it completely bug-free. Some of the 
error-checking procedures that need to be carried out include: 

• Ensuring that there are enough numbers supplied for a particular test (input sizes are 
given in Appendix L). If there are not enough numbers for a particular test the code 
currently assumes that the rest of the sequence is 0,0,0,0… 

• There are parameter requirements that must be satisfied so that the test is valid. Checks 
need to be integrated into the code to ensure that these requirements are adhered to. 
This parameter requirements are detailed in the descriptions of the tests in Appendix K 

• There is currently no check in place that ensures all numbers are in binary form. 

Note that there is some concern in the literature about using Excel for statistical 
calculations, including p-values [36, 37]. The p-values calculated by Excel’s 
“=chidist(a,b)” function are fine for their intended use here. They were cross-checked 
with Matlab. In any case, the p-values do not need a small percentage point accuracy for 
this application.
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I. ALTERNATIONS TO THE NIST STATISTICAL TEST SUITE 
 
The ‘NIST manual’ is shorthand for the document entitled “A Statistical Test Suite for Random 
and Pseudorandom Number Generators for Cryptographic Applications – NIST Special 
Publication May 2001. [6] 
 
There are a numbers of alterations to the NIST manual that are made in the RNG testing in this 
project. These are as follows: 
• Discrete Fourier Transform (Spectral) test 

Kim et al [51] show that there is a fault in the setting of this test. The threshold setting of  
n3  should really be n995732274.2  . This deviation makes the distribution invalid and so 

the correction has been adopted here. Additionally, the suggested correction of the variance 
2σ of theoretical distribution from 

2
npq

 to 
4
npq

 is also taken on board. 

• Lempel-Ziv Compression test. 
The settings of the Lempel-Ziv test have also been showed to be flawed.  

 
The statistical distribution of these two tests is derived from expected distributions. So P-value of 
this test is not uniform even if the test sequence is perfectly random and the significance level of 
this test is not 1%. [23] NIST recognises these inadequacies [38], advising that the threshold be 
decreased to the n995732274.2 level and the Lempel-Ziv Compression test by dropped 

altogether. 
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J. CORRECTIONS TO THE NIST STATISTICAL TEST SUITE 
 
There are a number of corrections that need to be made to the NIST manual, including: 
 
1. Igamc 

There are a host of mistakes in relation to the igamc function in the manual. The relationship 
between igamc, as defined in the manual, and Excel’s chidist is: 

),()
2

,
2

( 2
2

dfchidistdfigamc χχ
=

 
The chi-square distribution is a special case of the more general gamma distribution. 
 

• p112 The incomplete gamma function is defined as: 

∫ −−

Γ
=

Γ
=

x at dtte
aa

xaxaP
0

1

)(
1

)(
),(),( γ

 
This is incorrect, the definition13 is: 

∫ −−

Γ
=

Γ
=

x at dtte
aa

xaaxP
0

1

)(
1

)(
),(),( γ

   
The mistake is in the parameters of P which seem to be reversed in the NIST definition. The only 
reasonable explanation for this is that it is a typo. 
 
• p35 Section 2.8.4 (5) the following equation appears: 

274932.0
2

167729.3,
2
5

=





igamc

 
 
The correct answer to this is: 

 
674145.0)5,167729.3(

2
167729.3,

2
5

==





 chidistigamc

 
 
The mistake made here was that the parameters a and x were mixed up in the program used to 
get the answer. It seems that similar errors were made on p48 2.12.4 (5) where 

 








2
6.1,2igamc

  is given as 0.9057 when it should be 0.808792 and 








2
8.0,1igamc

 is given as 
0.8805 when it should be 0.67032 

 
 

 
2. Cumulative Sums Test p54 Example 2.14.8 
 

                                                 
13 The incomplete gamma function is defined as this in many places. As an example here is a link to 
Matlab’s definition http://www.mathworks.com/access/helpdesk/help/techdoc/ref/gamma.html 
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The test statistic z is the largest of the absolute values of the partial sums. z, therefore, must 
be an integer. In Example 2.14.8 z is reported to be 1.6 (forward) and 1.9 (reverse), both of 
which are non-integer. In the computation of the p-value z is divided by n . In the example 

100=n . The only logical explanation for this is that the author unintentionally skipped ahead 

in preparation for the p-value formula and reported n
z

 instead of z. 
 
 

3. Overlapping Sums Test p34 Section 2.8.4 (2) 
 

In the examination of the blocks to identify the number of occurrences of the target template 
NIST says that there are 2 occurrences in block 2 whereas there is in fact only one 
occurrence. 
 
 

4. Serial Test p47 Section 2.12.4 (2) 
 
There is a mistake in the illustration of how to determine the frequency of all possible 3-bit 
blocks. NIST says that 0000 =v  whereas 1000 =v . To avoid such a mistake it might be a 

good idea to add up the frequencies of all the m-bit blocks. The frequencies should add to n, 
where n=10 in this case. In the NIST manual n=9. 
 
 

5. Serial Test p48 Section 2.12.4 (5) 
 

NIST suggest that the p-values be calculated as follows: 
),2(1 22

m
migamcvalueP ψ∇=− −  and 

),2(2 223
m

migamcvalueP ψ∇=− −  

They should really be calculated by as follows: 

)
2

,2(1
2

2 mmigamcvalueP
ψ∇

=− −  and 

)
2

,2(2
22

3 mmigamcvalueP
ψ∇

=− −  

Interestingly, NIST uses the latter in calculating the p-values in the example which suggests 
that this is yet another typo in the manual and not a statistical blunder. 
 

6. Cumulative Sums Test p53 Section 2.14.4 (14) 
 

This is not so much a correction as a clarification. It relates to the calculation of the p-value. 
The range of the summation does not necessarily begin and end with an integer as per usual. 
Instead of letting k begin with a non-integer k should be rounded up to the nearest integer 
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while to end with k should be rounded down to the nearest integer. This is not clear from the 
description in the manual and one is wondering what to sum over. There are numerous other 
instances where clarification would be helpful. 
 

7. Overlapping Template Matching Test p32 Section 2.8.4 (1) 
 

It is stated that K=2, where K is the number of degrees of freedom, in the example. This is not 
consistent with the function call which states that K has been fixed to 5 in the test code nor is 
it consistent with part (2) of the test description where there are clearly 6 categories and 
therefore 5 degrees of freedom. In the example NIST do not define m, the length in bits of the 
template. For the example m is 2 so perhaps this is just yet another typo. 
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K. DESCRIPTION OF THE NIST TESTS 

This appendix describes in detail each of the tests within the NIST statistical test suite. It details 
the purpose of the test, step-by-step instructions of how the test is carried out, a conclusion and 
interpretation of the test results, the input size recommendations and a numerical example of how 
test works in practice.  
The order of the applications of the tests in the suite is arbitrary. However, NIST recommend that 
the Frequency test be run first, since this supplies the most basic evidence for the existence of 
non-randomness in a sequence, specifically, non-uniformity. If this test fails, the likelihood of 
other tests failing is high. 
 
Note 1: For many of the examples throughout this section, small sample sizes are used for illustrative purposes only e.g. 

n=10. The normal approximation is not really applicative in these examples. 

Note 2: These descriptions are largely reproduced from the NIST manual and are included here for the convenience of 

the reader. 

 
1. Frequency (Monobit) Test 
 
1.1 Test Purpose 
The focus of this test is the proportion of zeroes and ones for the entire sequence. The purpose 
of this test is to determine whether the number of ones and zeros in a sequence are 
approximately the same as would be expected for a truly random sequence. The test assesses 
the closeness of the fraction of ones to 1/2, that is, the number of ones and zeros in a sequence 
should be about the same. 
Note that if a generator fails this test then the likelihood of other tests failing is high. 
 
1.2 Test Parameters 
n The length of the bit string 
 
1.3 Test Description 
2. Conversion to +-1. The zeros and ones of the input sequence are converted to values of -1 

and +1 and are added together to produce nn XXXS +++= ....21 , where 12 −= iiX ε  

3. Compute the test statistic  
n
S

S n
obs =  

4. Compute 







=−

2
obsS

erfcvalueP , where erfc is the complementary error function (defined 

in section X) 
 
 
1.4 Decision Rule 
If the computed P-value is <0.01, then conclude that the sequence is non-random. Otherwise 
conclude that the sequence is random 
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1.5 Conclusion and Interpretation of Test Results 
Note that is the P-value were small (<0.01), then this would be caused by nS or obsS  being 

large. Large positive values of nS  is indicative of too many ones, and large negative values of 

nS  are indicative of too many zeros. 

 
1.6 Input Size Recommendations 
NIST recommends that each sequence to be tested consist of a minimum of 100 bits (i.e. 

100≥n ). This lower bound has been chosen i.e. 100 bits. 
 
1.1 Example 

1000101000101101100110000001001100
010011000010001101101000111000100001101010100000111111011100100100=ε

 

 
100=n  

 
16)1()1()1(1.............)1()1(1)1()1(11100 −=−+−+−+++−+−++−+−++=S  

 

6.1
100
16

=
−

=obsS  

 
109599.0=− valueP  

 
Since 01.0≥− valueP , accept the sequence as random. 
 
 
2. Frequency Test within a Block 
 
2.1 Test Purpose 
The focus of this test is the proportion of ones within M-bit blocks. The purpose of this test is to 
determine whether the frequency of ones in an M-bit block is approximately M/2, as would be 
expected under the assumption of randomness. 
Note that for block size M=1, this test degenerates to the Frequency (Monobit) test. 
 
2.2 Test Parameters 
M The length of each block 
n The length of the bit string 
ε  The sequence of bits as generated by the RNG or PRNG being tested. n≥ε  
 
2.3 Test Description 
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1. Partition the sequence into 





=
M
nN  non-overlapping blocks. Discard any unused bits. 

2. Determine the proportion 
M

M

j
jMi

i

∑
=

+−

= 1
)1(ε

π , for .1 Ni ≤≤  

3. Compute the 2χ statistic: 
2

1

2 )2
1(4)( ∑

=

−=
N

i
iMobs πχ  

4. Compute the P-value = )),(( 2 dfobschidist χ , where chidist returns the one-tailed 

probability of the chi-squared distribution and df is the degrees of freedom (the number of 
blocks minus 1). 

 
2.4 Decision Rule 
If the computed P-value is <0.01, then conclude that the sequence is non-random. Otherwise, 
conclude that the sequence is random. 
 
2.5 Conclusion and Interpretation of Test Results 
Small p-values (<0.01) would have indicated a large deviation from the equal proportion of ones 
and zeros in at least one of the blocks. 
 
2.6 Input Size Recommendations 
NIST recommends that each sequence to be tested consist of a minimum of 100 bits 
(i.e. 100≥n ) and that the block size M should be selected such that 20≥M  , nM 1.0>  and 

100<N . The lower bounds of 20=M has been chosen with 50=N and 1000=n . 
 
2.7 Example 

1000101000101101100110000001001100
010011000010001101101000111000100001101010100000111111011100100100=ε

 

 
100=n , 10=M  







=

10
100intN , where int(x) is the integer value of x. (this discards any bits at the end of the 

sequence being tested that do not make up a full block). 
 

0010111000011000101000110001100001

010011000010001101101000111000100001101010100000111111011100100100=ε
 

 
Block No. 1 2 3 4 5 6 7 8 9 10 
Proportion of 
Ones ( iπ ) 

0.4 0.7 0.4 0.3 0.5 0.3 0.4 0.4 0.4 0.4 
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2.7
)5.04.0()5.04.0(

)5.04.0()5.04.0()5.03.0()5.05.0(
)5.03.0()5.04.0()5.07.0()5.04.0(

**4)2
1(4)(

22

2222

2222
2

1

2 =
















−+−

+−+−+−+−

+−+−+−+−

=−= ∑
=

MMobs
N

i
iπχ

 
706438.0)10,2.7( =chidist   

0.616305)9,2.7( =chidist  

Since 01.0≥− valueP , accept the sequence as random. 
 
 
3. Runs Test 
 
3.1 Test Purpose 
The focus of this test is the total number of runs in a sequence, where a run is an uninterrupted 
sequence of identical bits. A run length of k consists of exactly k identical bits and is bounded 
before and after with a bit of opposite value. The purpose of the runs test is to determines 
whether the number of runs of ones and zeros of various lengths is ass expected for a random 
sequence. In particular, this test determines whether the oscillation14 between such zeroes and 
ones is too fast or too slow. 
 
3.2 Test Parameters 
n  The length of the bit string 
ε  The sequence of bits as generated by the RNG or PRNG being tested. n≥ε  
 
3.3 Test Description 

1. Compute the pre-test proportion π of ones in the input sequence: 
n
j j∑

=
ε

π  

2. Determine if the pre-test Frequency test is passed: If it can be shown that τπ ≥− 21 , then 

the Runs test need not be performed. 

3. Compute the test statistic ∑
−

=

+=
1

1
1)()(

n

k
n krobsV , where 0)( =kr if 1+= kk εε  , and 

1)( =kr otherwise. 

4. Compute 








−

−−
=−

)1(22
)1(2)(

ππ

ππ

n
nobsV

erfcvalueP n  

3.4 Decision Rule 
If the computed P-value is <0.01, then conclude that the sequence is non-random. Otherwise, 
conclude that the sequence is random. 
 

                                                 
14 An oscillation is considered to be a change from a one to a zero or vice versa. 
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3.5 Conclusion and Interpretation of Test Results 
A large value for )(obsVn  indicates an oscillation in the string which is too fast; a small value 

would have indicates that the oscillation is too slow. A fast oscillation occurs where there are a lot 
of changes e.g. 010101010 oscillates with every bit. A sequence with a slow oscillation has fewer 
runs that would be expected in a random sequence e.g. a a sequence containing 100 ones, 
followed by 73 zeroes, followed by 127 ones (a total of 300 bits) would have only three runs, 
whereas 150 runs would be expected. 
 
3.6 Input Size Recommendations 
NIST recommends that each sequence to be tested consist of a minimum of 100 bits (i.e. 

100≥n ). This lower bound of 100=n  has been chosen. 
 
3.7 Example 

1000101000101101100110000001001100
010011000010001101101000111000100001101010100000111111011100100100=ε

 

 
100=n  

42.0
100

00....10011
=

+++++++
==

∑
n
j jε

π  

 

08.05.042.021 =−=−π  and 2.0
100
22

===
n

τ   ⇒≥−⇒ τπ 21  Proceed with 

test 

∑
−

=

+=
1

1

1)()(
n

k
n krobsV = (0+1+0+1+1+0+0+……+1+1)+1=52 

 

500798.0
)42.01)(42.0()100(22

)42.01)(42.0)(100(252

)1(22

)1(2)(
=











−

−−
=











−

−−
=− erfc

n

nobsV
erfcvalueP n

ππ

ππ

 
Since 01.0≥− valueP , accept the sequence as random. 
 
 
4. Test for the Longest Run of Ones in a Block 
 
4.1 Test Purpose 
The focus of the test is the longest run of ones within M-bit blocks. The purpose of this test is to 
determine whether the length of the longest run of ones within the tested sequence is consistent 
with the length of the longest run of ones that would be expected in a random sequence. Note 
that an irregularity ini the expected length of the longest run of ones implies that there is also an 
irregularity in the expected length of the longest run of zeroes. Therefore, only a test for ones is 
necessary. 



 
 

  K.6   

 
4.2 Test Parameters 
n  The length of the bit string 
ε  The sequence of bits as generated by the RNG or PRNG being tested. n≥ε  
M The length of each block. The test code has been preset to accommodate three values 

for M: M=8, M=128 and M=10^4 in accordance with the following table: 
 

Minimum n M 
128 8 
6272 128 
750000 10^4 
  

 
N The number of blocks; selected in accordance with the value of M. 
 
4.3 Test Description 
1. Divide the sequence into M-bit blocks 
2. Tabulate the frequencies iv of the longest runs of ones in each block into categories, where 

each cell contains the number of runs of ones of a given length. 
For values of M supported by the test code, the iv  cells will hold the following counts: 

 
Vi M=8 M=128 M=10^4
V0 4 <=4 <=10
V1 6 5 11
V2 2 6 12
V3 4 7 13
V4  8 14
V5  >=9 15
V6   >=16
    

 

3. Compute ∑
=

−
=

K

i i

ii

N
Nv

obs
0

2
2 )(

)(
π

π
χ , where the values of iπ are provided in the NIST 

manual Section 3.4, 
The values of K and N are determined by the value of M in accordance with the following 
table: 

 
M K N 
8 3 16 
128 5 49 
10000 6 75 
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4. Compute =− valueP ),()
2

,
2

( 2
2

dfchidistdfigamc χχ
= , where df=K 

 
4.4 Decision Rule 
If the computed P-value is <0.01, then conclude that the sequence is non-random. Otherwise, 
conclude that the sequence is random. 
 
4.5 Conclusion and Interpretation of Test Results 
Large values of )(2 obsχ indicate that the tested sequence has clusters of ones. 

 
4.6 Input Size Recommendations 
NIST recommends any of the input sizes detailed in the table in 4.2 above as suitable. The one 
chosen for this project is 6272=n  and 128=M . 
 
4.7 Example 

0101100101101101100
01110011111001100000011010101011010010001001111010101000

00100000010010011100000110001001101010101101100110000=ε
 

 
128=n  

 

1011001011011000

110
11100

110011001101011110000000110101100001001101010001101

01001000000101110000001001100011011000001010111001100=ε

 

 Subblock Max-Run  Subblock Max-Run 
1 11001100 2 9 00010011 2 
2 00010101 1 10 11010110 2 
3 01101100 2 11 10000000 1 
4 01001100 2 12 11010111 3 
5 11100000 3 13 11001100 2 
6 00000010 1 14 11100110 3 
7 01001101 2 15 11011000 2 
8 01010001 1 

 

16 10110010 2 
       
 

0
3
9
4

3

2

1

=
=
=
=

v
v
v
vo
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88.4
1875.0(16

))1875.0(160(
)2305.0(16

))2305.0(163(
)3672.0(16

))3672.0(169(
)2148.0(16

))2148.0(164()(
)(

0

2
2 =

−
+

−
+

−
+

−
=

−
= ∑

=

K

i i

ii

N
Nv

obs
π

π
χ

 
180609.0=− valueP  

Since 01.0≥− valueP , accept the sequence as random. 
 
5. Binary Matrix Rank Test 
 
5.1 Test Purpose 
The focus of the test is the rank of the disjoint sub-matrices of the entire sequence. The purpose 
is to check for linear dependence among fixed length substrings of the original sequence. This 
test also appears in the DIEHARD battery of tests. 
 
5.2 Test Parameters 
n The length of the bit string 
ε  The sequence of bits as generated by the RNG or PRNG being tested. n≥ε  
M The number of rows in each matrix.  
Q The number of columns in each matrix 
 
5.3 Test Description 
1. Sequentially divide the sequence into M*Q-bit disjoint blocks; there will exist 









=
MQ
nN such blocks. Discarded bits that do not form part of a complete M*Q matrix. 

Each row of the matrix is filled with successive Q-bit blocks of the original sequence ε  i.e. 
the sequence is read from left to right across rows. 

2. Determine the binary rank )( lR of each matrix, where l=1,….,N. The method for determining 

the rank is described in X. 
3. Let =MF  the number of matrices with MRl = (full rank) 

=−1MF  the number of matrices with 1−= MRl  (full rank – 1) 

=−− −1MM FFN  the number of matrices remaining. 

4. Compute 

N
NFFN

N
NF

N
NFobs MMMM

1336.0
)1336.0(

5776.0
)5776.0(

2888.0
)2888.0()(

2
1

2
1

2
2 −−−

+
−

+
−

= −−χ  

These probabilities are explained in Section X. 
5. Compute the P-value = )),(( 2 dfobschidist χ , where chidist returns the one-tailed 

probability of the chi-squared distribution and df is the degrees of freedom (here it is 2). 
 
5.4 Decision Rule 
If the computed P-value is <0.01, then conclude that the sequence is non-random. Otherwise, 
conclude that the sequence is random. 
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5.5 Conclusion and Interpretation of Test Results 
Large values of )(2 obsχ (and hence, small p-values) indicate a deviation of the rank distribution 

from that corresponding random sequence. 
 
5.6 Input Size Recommendations 
The probabilities for M=Q=32 have been calculated and inserted into the test code. Other choices 
of M and Q may be selected, but the probabilities would need to be calculated. The minimum 
number of bits to be tested must be such that MQn 38≥  (i.e., at least 38 matrices are created. 

For M=Q=32, each sequence tested should consist of a minimum of 38,912 bits. This 
recommendation by NIST has been adhered to with M=Q=32 and the number of matrices created, 
N, equal to 38. This requires n=38,192 bits. 
 
5.7 Example 

2
3*3

101010110101100100
3

18

=





=

=
==

=

nN

QM
n

ε  

The two matrices are 

010
110
010

and 

011
101
010

. Note that the first matrix consists of the first three bits in 

row 1, the second set of three bits in row 2 and the third set of bits in row 3. The second matrix is 
similarly constructed using the next nine bits in the sequence. Here, 13 == FFM  (The rank of 

the second matrix is 3), 121 ==− FFM  (The rank of the first matrix is 2) and there is no matrix 

with lower rank. 
 
6. Discrete Fourier Transform (Spectral Test) 
 
6.1 Test Purpose 
The focus of this test is the peak heights in the Discrete Fourier Transform of the sequence. The 
purpose of this test is to detect periodic features (i.e., repetitive patterns that are near each other) 
in the tested sequence that would indicate a deviation from the assumption of randomness. The 
intention is to detect whether the number of peaks exceeding the 95 % threshold is significantly 
different than 5 %. 
 
6.2 Test Parameters 
n  The length of the bit string. 
e  The sequence of bits as generated by the RNG or PRNG being tested 
 
6.3 Test Description 
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1. The zeros and ones of the input sequence (e) are converted to values of –1 and +1 to create 
the sequence X = x1, x2, …, xn, where xi = 2ei – 1. 

2. Apply a Discrete Fourier transform (DFT) on X to produce: S = DFT(X). A sequence of 
complex variables is produced which represents periodic components of the sequence of bits 
at different frequencies. 

3. Calculate M = modulus(S´) , |S'|, where S´ is the substring consisting of the first n/2 elements 
in S, and the modulus function produces a sequence of peak heights. 

4. Compute T =  n995732274.2 , the 95 % peak height threshold value. Under an 

assumption of randomness, 95 % of the values obtained from the test should not exceed T. 
5. Compute 0N  = .95n/2. 0N  is the expected theoretical (95 %) number of peaks (under the 

assumption of randomness) that are less than T. 
6. Compute 1N  = the actual observed number of peaks in M that are less than T. 

7. Compute 
2/)05)(.95(.

)( 01

n
NN

d
−

=  

8. Compute 







=−

2
d

erfcvalueP  

2.6.5 Decision Rule (at the 1 % Level) 
If the computed P-value is < 0.01, then conclude that the sequence is non-random. Otherwise, 
conclude that the sequence is random. 
2.6.6 Conclusion and Interpretation of Test Results 
Since the P-value obtained in step 8 of Section 2.6.4 is ³ 0.01 (P-value = 0.123812), the 
conclusion is that the sequence is random. 
29 
A d value that is too low would indicate that there were too few peaks (< 95 %) below T, and 
too many peaks (more than 5 %) above T. 
 
6.6 Input Size Recommendations 
It is recommended that each sequence to be tested consist of a minimum of 1000 bits (i.e., n ³ 
1000). 
 
6.7 Example 
For example, if n = 10 and e = 1001010011, then X = 1, -1, -1, 1, -1, 1, -1, -1, 1, 1. 

0N  = 4.75 

1N =4 

538968.1
2/)05)(.95(.10

)75.44(
−=

−
=d  

123812.0
2

538968.1
=







 −
=− erfcvalueP  
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7. Non-overlapping Template Matching Test 
 
7.1 Test Purpose 
The focus of this test is the number of occurrences of pre-specified target strings. The purpose of 
this test is to detect generators that produce too many occurrences of a given non-periodic 
(aperiodic) pattern. For this test and the Overlapping Template Matching Test of Section X), an 
m-bit window is used to search for a specific m-bit pattern. If the pattern is not found, the window 
slides one bit position. It a pattern is found, the window is reset to the bit after the found pattern, 
and the search resumes. 
 
7.2 Test Parameters 
n The length of the bit string 
ε  The sequence of bits as generated by the RNG or PRNG being tested. n≥ε  
m The length in bits of each template. The template is the target string. 
B The m-bit template to be matched; B is a string of ones and zeroes (of length m)  
M The length in bits of the substring of ε  to be tested. (M has been set to 131,072 in the 
code) 
N The number of independent blocks.  
 
7.3 Test Description 
1. Partition the sequence into N independent blocks of length M. Discard any bits that are not 

part of a full block. 
2. Let ),...,1( NjWj =  be the number of times that B (the template) occurs within block j. The 

search for matches proceeds by creating an m-bit window on the sequence, comparing the 
bite within that window against the template. If there is no match, the window slides over one 
bit, e.g, if m=3 and the current window contains bits 3 to 5, then the next window will contain 
bits 4 to 6. If there is a match, the window slides over m bits, e.g., if the current (successful) 
window contains bits 3 to 5, then the next window will contain bits 6 to 8. 

3. Under an assumption of randomness, compute the theoretical mean µ  and variance 2σ : 

m

mM
2

)1( +−
=µ    






 −

−= mm

mM 2
2

2
12

2
1σ  

4. Compute ∑
=

−
=

N

j

jwobs
1

2

2
2 )(

)(
σ

µ
χ  

5. Compute the P-value = )),(( 2 dfobschidist χ , where chidist returns the one-tailed 

probability of the chi-squared distribution and df is the degrees of freedom (here it is 2). Note 
that multiple P-values will be computed i.e., one P-value will be computed for each template. 
For m=9, up to 148 P-values may be computed 

 
7.4 Decision Rule 
If the computed P-value is <0.01, then conclude that the sequence is non-random. Otherwise, 
conclude that the sequence is random. 
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7.5 Conclusion and Interpretation of Test Results 
If the P-value is very small (<0.01), then the sequence has irregular occurrences of the possible 
template patterns. 
 
7.6 Input Size Recommendations 
NIST recommend that the sequence to be tested consist of a minimum of 1000 bits.  
 
7.7 Example 

11100101101010010010=ε , then 20=n . If 2=N  and 10=M , then the two blocks would 
be 1010010010 and 1110010110. 
If 3=m and the template is 001=B , then the examination proceeds as follows: 
 

Block 1  Block 2  Bit Positions 
Bits 1W  Bits 2W  

1-3 101 0 111 0 
2-4 010 0 110 0 
3-5 100 0 100 0 
4-6 001 (hit) Increment to 1 001 (hit) Increment to 1 
5-7 Not examined  Not examined  
6-8 Not examined  Not examined  
7-9 001 Increment to 2 011 1 
8-10 010 (hit) 2 110 1 
 
 
Thus 21 =W  and 12 =W  

1
2

)1310(
2

)1(
3 =

+−
=

+−
= m

mMµ  

 

0098.0
2

1)3(2
2
110

2
12

2
1

)3(232
2 =






 −

−=





 −

−= mm

mMσ  

10412
)0098.0(

)11(
)0098.0(

)12()(
)(

2

2

2

2

1
2

2
2 =

−
+

−
=

−
= ∑

=

N

j

jwobs
σ

µ
χ  

0)1,10412()),(( 2 ===− chidistdfobschidistvalueP χ *The chi-square test is not valid here 

because of the small sample size and is just here for illustrative purposes. 
 
8. Overlapping Template Matching Test 
 
8.1 Test Purpose 
The focus of the Overlapping Template Matching test is the number of occurrences of pre-
specified target strings. Like the Non-overlapping Template Matching test, this test uses an m-bit 
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window to search for a specific m-bit pattern. In this test also the window slides one bit position if 
the pattern is not found. However, if the pattern is found then the window slides only one bit 
before resuming the search as opposed to sliding the m-bits. 
 
8.2 Test Parameters 
n The length of the bit string 
ε  The sequence of bits as generated by the RNG or PRNG being tested. n≥ε  
m The length in bits of each template. The template is the target string. 
B The m-bit template to be matched; B is a string of ones and zeroes (of length m)  
M The length in bits of the substring of ε  to be tested. (M has been set to 131,072 in the 
code) 
N The number of independent blocks.  
 
8.3 Test Description 
1. Partition the sequence into N independent blocks of length M. Discard any bits that do not 

form part of a full block. 
2. Calculate the number of occurrences of B in each of the N blocks. The search for matches 

proceeds by creating an m-bit window on the sequence, comparing the bits within that 
window against B and incrementing a counter when there is a match. The window slides over 
one bit after each examination, e.g., if m=4 and the first window contains bits 42 to 45, the 
next window consists of bits 43 to 46. Record the number of occurrences of B in each block 
by incrementing an array iv  (where i=0,….,5), such that 0v  is incremented where there are 

no occurrences of B in a substring, 1v  id incremented for one occurrence of B, …and 5v is 

incremented for 5 or more occurrences of B. 
3. Compute the values for λ  and η  that will be used to compute the theoretical probabilities 

iπ  corresponding to the classes of 0v : m

mM
2

)1( +−
=λ  

2
λη =  

4. Compute ∑
=

−
=

5

0

2
2 )(

)(
i i

ii

N
Nv

obs
π

π
χ , 

where
140657.0069935.0,099634.0,137955.0,183940.0,367879.0 543210 ====== ππππππ and

as computed by the equations specified in X. 
5. Compute )),(( 2 dfobschidistvalueP χ=−  where chidist returns the one-tailed probability 

of the chi-squared distribution and df is the degrees of freedom. df=5 
 
8.4 Decision Rule 
If the computed P-value is <0.01, then conclude that the sequence is non-random. Otherwise, 
conclude that the sequence is random. 
 
8.5 Conclusion and Interpretation of Test Results 
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Note that if a 2-bit template had been used and the entire sequence had too many 2-bit runs of 
ones, then: 5v would have been too large, the test statistic would be too large and the P-value 

would have been small and a conclusion or non-randomness would have resulted. 
 
8.6 Input Size Recommendations 
The values of K, M and N have been chosen such that each sequence to be tested consists of a 
minimum of  1million bits. Various values of m may be selected, but NIST recommends m=9 or 
m=10. If other values are desired, choose these values as follows: blah… 
 
8.7 Example 

01011010011011111000011100101100101101001011101111=ε  
n=50 
If K=2, M=10 and N=5, then the five blocks are1011101111, 0010110100 , 0111001011 , 
1011111000  and 0101101001 . 
 
If m=2 and B=11, then the examination of the first block 1011101111 proceeds as follows: 
 

Bit Positions Bits No. of occurrences 
1-2 10 0 
2-3 01 0 
3-4 11 (hit) Increment to 1 
4-5 11 (hit) Increment to 2 
5-6 10 2 
6-7 01 2 
7-8 11 (hit) Increment to 3 
8-9 11 (hit) Increment to 4 
9-10 11 (hit) Increment to 5 
   

 
Thus, after block1, there are five occurrences of 11, 5v is incremented, and 

0,0,0,0,0 43210 ===== vvvvv and 15 =v . 

In a like manner, blocks 2-5 are examined. In block 2, there are 2 occurrences of 11; 2v  is 

incremented. In block 3, there are 3 occurrences of 11; 3v  is incremented. In block 2, there are 4 

occurrences of 11; 4v  is incremented. In block 5, there is one occurrence of 11; 1v  is 

incremented. 
 

25.2
2

1210
2

)1(
2 =

+−
=

+−
= m

mMλ  and 125.1
2
25.2

2
===

λη  
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9. Maurer’s “Universal Statistical” Test 
 
9.1 Test Purpose 
The focus of this test is the number of bits between matching patterns (a measure that is related 
to the length of a compressed sequence). The purpose of the test is to detect whether or not the 
sequence can be significantly compressed without loss of information. A significantly 
compressible sequence is considered to be non-random. 
 
9.2 Test Parameters 
L The length if each block. 
n The length of the bit string 
ε  The sequence of bits as generated by the RNG or PRNG being tested. n≥ε  
 
9.3 Test Description 
1. The n-bit sequence is partitioned into two segments; an initialisation segment consisting of Q 

L-bit non-overlapping blocks, and a test segment consisting of K L-bit non-overlapping blocks. 
Bits remaining at the end of the sequence that do not form a complete L-bit block are 
discarded. The first Q blocks are used to initialise the test. The remaining K blocks are the 

test blocks ( Q
L
nK −



= ) 

2. Using the initialisation segment, a table is created for each possible L-bit value (i.e., the L-bit 
value is used as an index into the table). The block number of the last occurrence of each L-
bit block is noted in the table (i.e., For i from 1 to Q, Tj=I, where j is the decimal 
representation of the contents of the ith L-bit block) 

3. Examine each of the K blocks in the test segment and determine the number of blocks since 
the last occurrence of the same L-bit block (i.e., )jTi − . Replace the value in the table with 

the location of the current block (i.e, )iT j = . Add the calculated distance between re-

occurrences of the same L-bit block to an accumulating 2log sum of all the differences 

detected in the K blocks (i.e., )(log2 jTisumsum −+= ) 

4. Compute the test statistic: ∑
+

+=

−=
KQ

Qi
jn Ti

K
f

1
2 )(log1

, where jT  is the table entry 

corresponding to the decimal representation of the contents of the ith L-bit block. 
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5. Compute 






 −
=−

σ2
)(exp LectedValuef

erfcvalueP n , where erfc is the complementary 

error function, )(exp LectedValue and σ are taken from a table of pre-computed values 

from the Handbook of Applied Cryptography. 

K
Liancec )(var

=σ , where 
15

3248.07.0
/3 LK

LL
c

−







 ++−=  

While it is possible to conduct this test on values of L from 6 to 16, the lower bound of 6 is chosen. 
 

2177052.5)6(exp =ectedValue  

variance when L=6 = 2.954 
 
9.4 Decision Rule 
If the computed P-value is <0.01, then conclude that the sequence is non-random. Otherwise, 
conclude that the sequence is random. 
 
9.5 Conclusion and Interpretation of Test Results 
If nf  differs significantly from )(exp LectedValue , then the sequence is significantly 

compressible. 
 
9.6 Input Size Recommendations 
NIST gives recommendations of what combination of n, L and Q should be chosen. The lower 
bound of the recommendations has been chosen and are as follows: 
 

N L Q=10*2^L 
≥ 387,840 6 640 
   

 
9.7 Example 

11010101110101101001=ε , n=20 
If L=2 and Q=4, then K=[n/L]-Q=[20/2]-4=6. The initialisation segment is 01011010. The L-bit 
blocks are shown on the following table: 
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Block Type Conte

nts 
1 01 
2 01 
3 10 
4 

Initialisation Segment 

10 
5 01 
6 11 
7 01 
8 01 
9 01 
10 

Test Segment 

11 
   

 
The following table is created using the 4 initialisation blocks: 
 

Possible L-bit Value  
00 
(saved in 0T ) 

01 
(saved in 1T ) 

10 
(saved in 2T ) 

11 
(saved in )3T  

Initialisation 0 2 4 0 
 
For block 5 (the 1st test block): 5 is placed in the “01” row of the table (i.e., 1T ), and 

584962501.1)25(log2 =−=sum  

For block 6: 6 is placed in the “11” row of the table (i.e., 3T ), and 

584962501.2584962501.1)06(log584962501.1 2 +=−+=sum   

……………………. 
For block 10: 10 is replaced in the “11” row of the table (i.e., 3T ), and  

169925002.72169925002.5)610(log169925002.5 2 =+=−+=sum  

The states of the table are 
 

Possible L-bit Value Iteration Block 
00 01 10 11 

4 0 2 4 0 
5 0 5 4 0 
6 0 5 4 6 
7 0 7 4 6 
8 0 8 4 6 
9 0 9 4 6 
10 0 9 4 10 
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1949875.1
6

169925002.7
==nf  

767189.0
338.12

5374383.11949875.1
=












 −
=− erfcvalueP  

(Note that the expected value and variance for L=2 is not provided in the NIST manual because a 
block length of 2 is not recommended for testing. 
 
10. Linear Complexity Test 
 
10.1 Test Purpose 
The focus of this test is the length of a linear feedback shift generator (LFSR). The purpose of this 
test is to determine whether or not the sequence is complex enough to be considered random. 
Random sequences are characterised by longer LFSRs. A LFSR that is too short implies non-
randomness. 
 
10.2 Test Parameters 
M length in bits of a block 
N  length of the bit string 
K the number of degrees of freedom 
ε  The sequence of bits as generated by the RNG or PRNG being tested. n≥ε  
 
10.3 Test Description 
1. Partition the n-bit sequence into N independent blocks of M bits, where n=MN 
 
2. Using the Berlekamp-Massey algorithm, determine the linear complexity Li of each of the N 

blocks (i=1,….,N). Li is the length of the shortest linear feedback shift register sequence that 
generates all bits in the block i. Within any li-bit sequence, some combination of the bits, 
when added together modulo 2, produces the next bit in the sequence (bit Li+1) 

 
3. Under an assumption of randomness calculate the theoretical mean µ : 

M

M MM
2

)9
2

3(

36
))1(9(

2

1 +
−

−+
+=

+

µ  

 

4. For each substring, calculate a value of iT , where 
9
2)(*)1( +−−= µi

M
i LT  

5. Record the iT  values in 60 ,...,vv as follows: 
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If: 

5.2
5.25.1
5.15.0

5.05.0
5.05.1
5.15.2

5.2

>
≤<
≤<

≤<−
−≤<−
−≤<−

−≤

i

i

i

i

i

i

i

T
T
T
T
T
T

T

 

Increment 0v  by one 

Increment 1v  by one 

Increment 2v  by one 

Increment 3v  by one 

Increment 4v  by one 

Increment 5v  by one 

Increment 6v  by one 

 

6. Compute ∑
=

−
=

K

i i

ii

N
Nv

obs
0

2
2 )(

)(
π

π
χ , where 

02078.0,0625.0,25.0,5.0,125.0,03125.0,01047.0 6543210 ======= πππππππ
are the probabilities hardcoded (equations given in the manual). 

7. Compute 







=−

2
)(,

2

2 obsKigamcvalueP χ
 

10.4 Decision Rule 
If the computed P-value is <0.01, then conclude that the sequence is non-random. Otherwise, 
conclude that the sequence is random. 
 
10.5 Conclusion and Interpretation of Results 
If the P-value were <0.01, this would have indicated that the observed frequency counts of 

iT stored in the vi bins varied from the expected values. 

 
10.6 Input Size 
NIST recommends that 610≥n , while the value of M must be in the range 5000500 ≤≤ M , 
and 200≥N . This is so that the 2χ result is valid. N=1000000, M=500 and N=1000 has been 

chosen for this project. 
 
10.7 Example 
If M=13 and the block to be tested is 1101011110001, then Li=4. The sequence is produced by 
adding the 1st and 2nd bits within a 4-bit sequence to produce the next bit (the 5th bit). The 
examination proceeded as follows: 
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 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 
The first 4 bits and the resulting 5th bit: 1 1 0 1 0 
Bits 2-5 and the resulting 6th bit: 1 0 1 0 1 
Bits 3-6 and the resulting 7th bit: 0 1 0 1 1 
. 1 0 1 1 1 
. 0 1 1 1 1 
. 1 1 1 1 0 
. 1 1 1 0 0 
. 1 1 0 0 0 
Bits 9-12 and the resulting 13th bit 1 0 0 0 1 
 

777222.6
2

)9
2

3
13(

36
))1(9(

2
13

13

113

=
+

−
−+

+=
+

µ  

 

999444.2
9
2)(*)1( =+−−= µi

M
i LT  

 
11. Serial Test 
11.1 Test Purpose 
The focus of this test is the frequency of all possible overlapping m-bit patters across the entire 
sequence. The purpose of this test is to determine whether the number of occurrences of the m2  
m-bit overlapping patters s approximately the same as would be expected for a random sequence. 
Random sequences have uniformity; that is, every m-bit pattern has the same chance of 
appearing as every other m-bit pattern. Note that for m=1, the serial test is equivalent to the 
frequency test. 
 
11.2 Test Parameters 
m The length in bits of each block 
n The length in bits of the bit string 
ε  The sequence of bits as generated by the RNG or PRNG being tested. n≥ε  
 
11.3 Test Description 
1. Extend the sequence by appending the first m-1 bits to the end of the sequence for distinct 

values of n. 
2. Determine the frequency of all possible overlapping m-bit blocks, all possible overlapping (m-

1)-bit blocks and all possible overlapping (m-2)-bit blocks. Let 
mii vv ...

1
denote the frequency 

of the m-bit pattern mii ....1 ; let 
11

...,
−mii vv denote the frequency of the (m-1)-bit pattern 1....1 −mii ; 

and let 
21

...,
−mii vv denote the frequency of the (m-2)-bit pattern 2....1 −mii  
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3. Compute nv
n
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m
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m
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m
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2
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2
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2
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4. Compute 2
1

22
−−=∇ mmm ψψψ , and 

2
2

2
1

222 2 −− +−=∇ mmmm ψψψψ  

5. Calculate 

)
2

,2(1
2

2 mmigamcvalueP
ψ∇

=− −  and 

)
2

,2(2
22

3 mmigamcvalueP
ψ∇

=− −  

 
11.4 Decision Rule 
If the computed P-value is <0.01, then conclude that the sequence is non-random. Otherwise, 
conclude that the sequence is random. 
 
11.5 Conclusion and Interpretation of Results 
If 22

mψ∇  or 2
mψ∇  is large then non-uniformity of the m-bit blocks is implied. 

 
11.6 Input Size Recommendations 
Choose m and n such that 2][log2 −< nm  

 
11.7 Example 

0011011101=ε  
n=10 
If m=3, then 000011011101'=ε  
If m=2, then 00011011101'=ε  
If m=1, then 0011011101'=ε  (the original sequence) 
 
The frequency of all 3-bit blocks is: 

1,2,2,1,2,1,1,0 111110101100011010001000 ======== vvvvvvvv . 

 
The frequency of all 2-bit blocks is: 

3,3,3,1 11100100 ==== vvvv . 

 
The frequency of all 1-bit blocks is: 

6,4 10 == vv . 
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808792.0)4,6.1()
2
6.1,2(1 ===− chidistigamcvalueP   

67032.0)2,8.0()
2
8.0,1(2 ===− chidistigamcvalueP  

 
12. Approximate Entropy Test 
 
12.1 Test Purpose 
As with the Serial test, the focus of this test is the frequency of all possible overlapping m-bit 
patters across the entire sequence. The purpose of the test is to compare that frequency of 
overlapping blocks of two consecutive/adjacent lenths (m and m+1) against the expected result 
for a random sequence. 
 
12.2 Test Parameters 
m The length of each block – in this case, the first block length used in the test. m+1 is the 

second block length used. 
n The length in bits of the bit string 
ε  The sequence of bits as generated by the RNG or PRNG being tested. n≥ε  
 
12.3 Test Description 
1. Augment the n-bit sequence to create n overlapping m-bit sequences by appending m-1 bits 

from the beginning of the sequence to the end of the sequence. 
2. A frequency count is made of the n overlapping blocks (e.g. if a block containing jε to 1−+mjε  

is examined at time j, then the block containing 1+jε  to mj+ε  is examined at time j+1). Let the 

count of the possible m-bit ((m+1)-bit) values be represented as m
iC  where I is the m-bit 

value. 

3. Compute 
n
iCm

i
#

=  for each value of i 
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4. Compute ∑
−

=

=
12

0

)( log
m

i
ii

m ππϕ , where 3
ji C=π , and ij 2log=  

5. Repeat steps 1-4, replacing m by m+1 
6. Compute the test statistic )](2[log22 mApEnn −=χ , where )1()()( +−= mmmApEn ϕϕ . 

7. Compute )
2

,2(
2

1 χ−=− migamcvalueP  

 
12.4 Decision Rule 
If the computed P-value is <0.01, then conclude that the sequence is non-random. Otherwise, 
conclude that the sequence is random. 
 
12.5 Conclusion and Interpretation of Results 
Small values of ApEn(m) would imply stong regularity. Large values would imply substantial 
fluctuation or irregularity. 

 
12.6 Input Size Recommendations 
Choose m and n such that 2][log2 −< nm  

 
12.7 Example 

0100110101=ε  
010100110101'=ε  for m=3 

The overlapping m-bit blocks (where m=3) become 010, 100, 001, 011, 110, 101, 010, 101, 010 
and 101. The calculated counts for the 822 3 ==m possible m-bit strings are: 

0111#,3101#,1110#,1011#,1100#,3010#,1001#,0000# ========  

0,3.0,1.0,1.0,1.0,3.0,1.0,0 3
111

3
101

3
110

3
011

3
100

3
010

3
001

3
000 ======== CCCCCCCC  

64341772.1)0(log0)3.0(log3.0......)1.0(log1.0)0(log03 −=++++=ϕ  

 
0100100110101'=ε  for m=4 

The overlapping m-bit blocks (where m=3) become 0100, 1001, 0011, 0110, 1101, 1010, 0101, 
1010, 0101 and 1010. The calculated counts for the 1622 4 ==m possible m-bit strings are: 

11001#,11101#,31010#,10110#,20101#,10100#,10011# ======= and all other 

patterns are zero. 
1.0,1.0,3.0,1.0,2.0,1.0,1.0 4

1001
4

1101
4

1010
4
0110

4
0101

4
0100

4
0011 ======= CCCCCCC and all 

other values are zero. 
83437197.1)1.0(log1.0)3.0(log3.0......)1.0(log1.0)1.0(log1.04 −=++++=ϕ  

 
190954.0)83437197.1 (64341772.1)3( )4()3( =−−−=−= ϕϕApEn  

502193.0)190954.0693147.0)(10(2)]3(2)[log10(22 =−=−= ApEnχ  

99.0)8,502193.0()
2

502193.0,4()
2

,2(
2

1 ====− − chidistigamcigamcvalueP m χ
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13. Cumulative Sums (Cusum) Test 
 
13.1 Test Purpose 
The focus of this test is the maximal excursion (from zero) of the random walk defined by the 
cumulative sum of adjusted (-1,+1) digits in the sequence. The purpose of the test is to determine 
whether the cumulative sum of the partial sequences occurring in the tested sequence is too 
large or too small relative to the expected behaviour of that cumulative sum for random 
sequences. This cumulative sum may be considered as a random walk. For a random sequence, 
the excursions of the random walk should be near zero. For certain types of non-random 
sequences, the excursions of this random walk from zero will be large. 

 
13.2 Test Parameters 
n The length in bits of the bit string 
ε  The sequence of bits as generated by the RNG or PRNG being tested. n≥ε  
Mode  A switch for applying the test either forward through the input sequence (mode=0) or 

backward through the sequence (mode=1). 
 
13.3 Test Description 
1. Form a normalised sequence: The zeroes and the ones of the input sequence, ε , are 

converted to values of iX  of -1 and +1 using 12 −= iiX ε . 

2. Compute the partial sums iS  of successively larger subsequences, each starting with 1X  (if 

mode=0) or nX (if mode=1). 

 
Mode =0 (forward) Mode=1 (backward) 

nkn

kk

XXXXXS

XXXXS

XXXS
XXS

XS

++++++=

++++=

++=
+=

=

......
.
.

...
.
.

321

321

3213

212

11

 

1121

121

213

12

1

......
.
.

...
.
.

XXXXXS

XXXXS

XXXS
XXS

XS

knnnnn

knnnnk

nnn

nn

n

++++++=

++++=

++=
+=

=

+−−−

+−−−

−−

−

 
That is, kkk XSS += −1  for mode 0, and 11 +−− += knkk XSS  for mode=1. 

3. Compute the test statistic knk Sz ≤≤= 1max , where knk S≤≤1max  is the largest of the 

absolute values of the partial sums kS . 
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4. Compute P-value 

 

∑

∑
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where Φ  is the standard normal cumulative probability distribution function. 
 
13.4 Decision Rule 
If the computed P-value is <0.01, then conclude that the sequence is non-random. Otherwise, 
conclude that the sequence is random. 
 
13.5 Conclusion and Interpretation of Results 
When mode=0, large values of this statistic indicate that there are either “too many ones” or “too 
many zeroes” at early stages of the sequence; mode=1, large values of this statistic indicate that 
there are either “too many ones” or “too many zeroes” at the late stages. Small values of the 
statistic would indicate that ones and zeros are intermixed too evenly. 
 
13.6 Input Size Recommendations 
NIST recommends that each sequence to be tested consist of a minimum of 100 bits. 
 
13.7 Example 

1,1,1),1(,1),1(,1,1),1(,1
1011010111

−−−=
=
X
ε

 

When mode=0 then 

4111)1(1)1(11)1(1
311)1(1)1(11)1(1

21)1(1)1(11)1(1
1)1(1)1(11)1(1

21)1(11)1(1
1)1(11)1(1

211)1(1
11)1(1

0)1(1
1

10

9

8

7

6

5

4

3

2

1

=+++−++−+++−+=
=++−++−+++−+=

=+−++−+++−+=
=−++−+++−+=

=+−+++−+=
=−+++−+=

=++−+=
=+−+=

=−+=
=

S
S
S
S
S
S
S
S
S
S

 

z=4 
P-value=0.4116588 
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14. Random Excursions Test 
 
14.1 Test Purpose 
The focus of this test is the number of cycles having exactly K visits in a cumulative sum random 
walk. The cumulative sum random walk is derived from partial sums after the (0,1) sequence is 
transferred to the appropriate (-1,1) sequence. A cycle of a random walk consists of a sequence 
of steps of unit length taken at random that begin at and return to the origin. The purpose of this 
test is to determine if the number or visits to a particular state within a cycle deviates from what 
one would expect for a random sequence. This test is actually a series of eight tests (and eight 
conclusions), one test and one conclusion for each of the states: -4, -3, -2, -1 and +1, +2, +3, +4 
 
14.2 Test Parameters 
n The length in bits of the bit string 
ε  The sequence of bits as generated by the RNG or PRNG being tested. n≥ε  
 
14.3 Test Description 
1. Form a normalised (-1,+1) sequence X: The zeroes and ones of the input sequence (ε ) are 

changed to values of -1 and +1 via 12 −= iiX ε . 

2. Compute the partial sums iS  of successively large subsequences, each starting with 1X . 

For the set { }iSS = . 

nkn

kk

XXXXXS

XXXXS

XXXS
XXS

XS

++++++=

++++=

++=
+=

=

......
.
.

...
.
.

321

321

3213

212

11

 

 
3. Form a new sequence S’ by attaching zeroes before and after S. That is 

0,,...,,,0' 21 nsssS =  

4. Let J = the total number of zero crossings in S’, where a zero crossing is a value of zero in S’ 
that occurs after the starting zero. J is also the number of cycles in S’, where a cycle of S’ is a 
subsequence consisting of an occurrence of zero, followed by no-zero values, and ending 
with another zero. The ending zero in one cycle may be the beginning zero in another cycle. 
The number of cycles in S’ is the number of zero crossings. If J<500, discontinue the test. 

5. For each cycle and for each non-zero state value x having values 14 −≤≤− x  and 
41 ≤≤ x , compute the frequency of each x within each cycle. 
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6. For each of the eight states of x, compute )(xvk = the total number of cycles in which 
state x occurs exactly k times among all cycles, for k=0, 1, …, 5 (for k=5, all 

frequencies ≥ 5 are stored in )(5 xv ). Note that ∑
=

=
5

0
)(

k
k Jxv . 

 
7. For each of the eight states of x, compute the test statistic 

∑
=

−
=

5

0

2
2

)(
))()((

)(
k k

kk

xJ
xJxv

obs
π

π
χ , where )(xkπ  is the probability that the state x occurs k 

times in a random distribution. The values for )(xkπ  and their method of calculation are 

provided in the NIST manual. Note that the eight 2χ statistics will be produced (i.e., for x=-4, 

-3, -2, -1, 1, 2, 3, 4) 

8. For each state of x, compute )
2

,
2
5(

2χigamcvalueP =− . Eight p-values will be produced. 

14.4 Decision Rule 
If the computed P-value is <0.01, then conclude that the sequence is non-random. Otherwise, 
conclude that the sequence is random. 
 
14.5 Conclusion and Interpretation of Results 
If 2χ (obs) were too large, then the sequence would have displayed a deviation from the 

theoretical distribution for a given state across all cycles. 
 
14.6 Input size recommendations 
NIST recommend that each sequence to be tested consist of a minimum of 1,000,000bits. 
 
14.7 Example 

{ }

3
0,2,1,2,1,2,1,0,1,0,1,0'

2,1,2,1,2,1,0,1,0,1
1,1,1,1,1,1,1,1,1,1

0110110101

=
−=

−=
−−−−=

=

J
S
S
X
ε

 

The 3 cycles are {0,-1,0}, {0,1,0}, {0,1,2,1,2,1,2,0} 



 
 

  K.28   

 
Cycles State x 
{0,-1,0} {0,1,0} {0,1,2,1,2,1,2,0}

-4 0 0 0 
-3 0 0 0 
-2 0 0 0 
-1 1 0 0 
1 0 1 3 
2 0 0 3 
3 0 0 0 
4 0 0 0 
 

2)1(0 =−v  (the -1 state occurs exactly 0 times in 2 cycles), 

1)1(1 =−v  (the -1 state occurs only once in 1 cycle) and 

0)1()1()1()1( 5432 =−=−=−=− vvvv  (the -1 state occurs exactly {2,3,4, ≥ 5} times in 0 cycles. 

And so on for each state… 
 
This can be shown using the following table: 
 

Number of Cycles State x 
0 1 2 3 4 5 

-4 3 0 0 0 0 0 
-3 3 0 0 0 0 0 
-2 3 0 0 0 0 0 
-1 2 1 0 0 0 0 
1 1 1 0 1 0 0 
2 2 0 0 1 0 0 
3 3 0 0 0 0 0 
4 3 0 0 0 0 0 
 
 
15. Random Excursions Variant Test 
 
15.1 Test Purpose 
The focus of this test is the total number of times that a particular state is visited (i.e., occurs) in 
a cumulative sum random walk. The purpose of this test is to detect deviations from the 
expected number of visits to various states in the random walk. This test is actually a series of 
eighteen tests (and conclusions), one test and conclusion for each of the states: -9, -8, …, -1 and 
+1, +2, …, +9. 
 
15.2 Test Parameters 
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n The length in bits of the bit string 
ε  The sequence of bits as generated by the RNG or PRNG being tested. n≥ε  
 
15.3 Test Description 
1. Form the normalized (-1, +1) sequence X in which the zeros and ones of the input sequence 

(e) are converted to values of –1 and +1 via X = X1, X2, … , Xn, where Xi = 2ei– 1. 
2. Compute partial sums Si of successively larger subsequences, each starting with x1. Form 

the set S = {Si}. 
 

S1 = X1 
S2 = X1 + X2 
S3 = X1 + X2 + X3 
. 
. 
. 
Sk = X1 + X2 + X3 + . . . + Xk 
. 
. 
Sn = X1 + X2 + X3 + . . . + Xk + . . .+ Xn 
 

3. Form a new sequence S' by attaching zeros before and after the set S. That is, S' = 0, s1,s2, 
… , sn, 0. 

4.  
5. For each of the eighteen non-zero states of x, compute )(xξ  = the total number of times that 

state x occurred across all J cycles. 

(5) For each )(xξ , compute P-value = 













−

−

24(2

)(

xJ

Jx
erfc

ξ
. Eighteen P-values are computed. 

 
15.4 Decision Rule  
If the computed P-value is < 0.01, then conclude that the sequence is non-random. Otherwise, 
conclude that the sequence is random. 
 
15.5 Input Size Recommendations 
It is recommended that each sequence to be tested consist of a minimum of 1,000,000 bits (i.e.,n 
³ 106). 
 
15.6 Example 
 
ε = 0110110101, then n = 10 and X = -1, 1, 1, -1, 1, 1, -1, 1, -1, 1. 
For the example in this section, 

S1 = -1  S6 = 2 
S2 = 0   S7 = 1 
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S3 = 1   S8 = 2 
S4 = 0   S9 = 1 
S5 = 1  S10 = 2 

 
The set S = {-1, 0, 1, 0, 1, 2, 1, 2, 1,2} 
For the example, S' = 0, -1, 0, 1, 0, 1, 2, 1, 2, 1, 2, 0. The resulting random walk is 
shown below. 

 
 

3)2(,4)1(,1)1( ===− ξξξ  and all other 0)( =xξ  

when x = 1, P-value = 683091.0
214(3*2

34
=














−

−
erfc  
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L. INPUT SIZES 
 
Table L.1 shows the input sizes and parameter setting that were used in the suite to test the 
random number generators. 
 

    
Input Size 
(n) Other Parameters 

1 Frequency (Monobit) test 100  
2 Frequency test within a block 2000 M=20, N=100 
3 Runs test 100  
4 Test for the longest run of ones in a block 6272 M=128 
5 Binary matrix rank test 38912  
6 Discrete fourier transform (spectral) test 1024  
7 Non-overlapping template matching test 1048576 m=9, B=111111111 
8 Overlapping template matching test 998976 m=9, M=1032, N=968 
9 Maurer's universal statistical test 387840 L=6, Q=640 

10 Linear Complexity test 1000000 M=500, N=1000 
11 Serial test 500 m=5, n=500 
12 Approximate Entropy test 500 m=5, n=500 
13 Cumulative sums (cusum) test 100  
14 Random Excursions Test 1000000  
15 Random Excursions Variants Test 1000000  

        
L.1 Input sizes and parameter settings 
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M. HOW THE NUMBERS WERE GENERATED 
 
This appendix gives an overview of how the numbers are generated by the five generators 
examined in this project as well as how the numbers were extracted for testing. 
 
Random.org 
 
A radio is tuned into a frequency where nobody is broadcasting. The atmospheric noise picked up 
by the receiver is fed into a Sun SPARC workstation through the microphone port where it is 
sampled by a program as an eight bit mono signal at a frequency of 8KHz. The upper seven bits 
of each sample are discarded immediately and the remaining bits are gathered and turned into a 
stream of bits with a high content of entropy. Skew correction is performed on the bit stream, in 
order to ensure that there is an approximately even distribution of 0s and 1s. 
 
The skew correction algorithm used is based on transition mapping. Bits are read two at a time, 
and if there is a transition between values (the bits are 01 or 10) one of them - say the first - is 
passed on as random. If there is no transition (the bits are 00 or 11), the bits are discarded and 
the next two are read. This simple algorithm was originally due to Von Neumann and completely 
eliminates any bias towards 0 or 1 in the data. It is only one of several ways of performing skew 
correction, though, and has a number of drawbacks. First, it takes an indeterminate number of 
input bits. Second, it is quite inefficient, resulting in the loss of 75% of the data, even when the bit 
stream is already unbiased. [ref – random.org] 
 
The Random.org numbers that were used in the tests are on the disc attached to the inside of the 
back cover of the report.  
 
Excel 
 
The Excel application contained within Windows-XP was used to generate the numbers that were 
subjected to the statistical tests.  
 
The RANDBETWEEN function in Excel returns a random integer between specified numbers. To 
generate binary random numbers the formula RANDBETWEEN(0,1) was used. Although it was 
not possible to verify it is thought that the RANDBETWEEN function calls on the RAND function 
in a manner similar to the following: 
• Call RANDBETWEEN(a,b) 
• RAND()*(b+1-a)+a is calculated. This will give a random number between a and b+1 but it will 

not necessarily be integer. Note the RAND() returns a uniform number between 0 and 1. 
• To make the number integer the fractional part is truncated. 
 
Essentially, the random number is generated with the RAND() function and a transformation 
made to the RAND() output. And so, how RAND() generates numbers needs to be identified.  
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The inadequacy of the random number generation in Excel pre-2003 was much publicised in the 
literature [X, X and X]. The RAND() function in earlier versions of Excel used a pseudo-random 
number generation algorithm whose performance on standard tests of randomness was not 
sufficient. Although this is likely to affect only those users who have to make a large number of 
calls to RAND, such as a million or more, the pseudo-random number generation algorithm that is 
described below was implemented for Excel 2003. [64] 
The basic idea behind this RNG is to generate three streams of random numbers (in columns 
headed "ix", "iy", and "iz") by a common technique and then to use the result that if you take three 
random numbers on [0,1] and sum them, the fractional part of the sum is itself a random number 
on [0,1]. The critical statements in the Fortran code listing from the original Wichman and Hill 
article who developed the algorithm are: 
 
IX, IY, IZ SHOULD BE SET TO INTEGER VALUES BETWEEN 1 AND 30000 BEFORE FIRST 
ENTRY 
IX = MOD(171 * IX, 30269) 
IY = MOD(172 * IY, 30307) 
IZ = MOD(170 * IZ, 30323) 
RANDOM = AMOD(FLOAT(IX) / 30269.0 + FLOAT(IY) / 30307.0 + FLOAT(IZ) / 30323.0, 1.0) 
 
Therefore IX, IY, IZ generate integers between 0 and 30268, 0 and 30306, and 0 and 30322 
respectively. These are combined in the last statement to implement the simple principle that was 
expressed earlier: if you take three random numbers on [0,1] and sum them, the fractional part of 
the sum is itself a random number on [0,1]. 
 
Because RAND produces pseudo-random numbers, if a long sequence of them is produced, 
eventually the sequence will repeat itself. Combining random numbers as in the Wichman-Hill 
procedure guarantees that more than 10^13 numbers will be generated before the repetition 
begins.  
 
Minitab 
 
Minitab also uses a pseudorandom number generator. Although there should be detailed 
information about the built-in generator, which should state explicitly which generator is used, 
there appears not to be in the Minitab manual, the Minitab help files or the Minitab website. 
 
For this project Minitab (Release 14) was used to generate random numbers as follows: 
• Calc menu – Random Data – Integer 
• Minimum value 0 
• Maximum value 1 
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Hotbits 
 

Hotbits is similar to Random.org in that it is also a physical random number generator. The 
Hotbits website [11] gives a detailed and lively description of how the numbers are generated. 
What follows is a summary; Hotbits uses radioactive decay of Kryton-85 as a source of entropy. 
The numbers are generated by timing successive pairs of radioactive decays detected by a 
Geiger-Müller tube interfaced to a computer. There is no way to predict when a given atom of 
Krypton-85 will decay into Rubidium and so the interval between two consecutive decays is also 
random. A pair of these intervals is measured, and a zero or one emitted based on the relative 
length of the two intervals. If the same interval is measured for the two decays, then the 
measurement is discarded. In practice, to avoid any residual bias resulting from non-random 
systematic errors in the apparatus or measuring process consistently favouring one state, the 
sense of the comparison between T1 and T2 is reversed for consecutive bits.  

HotBits output can be requested by filling out and transmitting a request form, which is sent by 
the users WWW browser in HTTP to Hotbits’ Web server, www.fourmilab.ch. The request form 
is processed by a CGI program written in Perl which, after validating the request, forwards it in 
HTTP format to a dedicated HotBits server machine which is connected to the HotBits generation 
hardware via the COM1 port.  

To provide better response, the dedicated HotBits server machine maintains an inventory of two 
million (256 kilobytes) random bits, and services requests from this inventory whenever possible. 
The server rebuilds inventory in the background, between user requests for HotBits. Random.org 
has a similar inventory procedure. 

There were restrictions on the amount of numbers that could be downloaded from Hotbits. The 
maximum that can be downloaded is 2048 bytes and the number of downloads per day per 
computer is limited to five. The suite needs 5485924 bits. To download enough numbers to run 
the tests 100 times would take over 18 years using one computer! For this reason, the tests were 
ran only once on HotBits output. Several computers were used to download the numbers over the 
course of a few days. Note that the “binary download to a file” option was used to download the 
numbers.  
 
Randomnumbers.info 
 
Like Random.org and Hotbits, Randomnumbers.info [27] is also a physical random number 
generator. Randomnumbers.info gets its entropy from a quantum source. Exactly how the 
numbers are generated is not clear from the information posted on the website. It does not use 
radioactive decay. There is some suggestion perhaps that it uses a photon source. 
 
The numbers can be downloaded easily from the Randomnumbers,info website. Notice that there 
are again restrictions on the amount of numbers that can be downloaded.
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N. RESULTS 
 
This appendix records the results of testing Random.org and the chosen comparatives.  
 
Table N.1 below shows the pass rates for Random.org and the two PRNG comparatives. All three 
RNGs have acceptable pass rates of the individual tests, where acceptable is deemed to be a 
pass rate of 88.95% (see Section 4.2.4.1). 
 
While the pass rates of the individual tests are all quite high this does not imply a high pass rate 
of the suite. Remember that to pass the suite the generator must pass all of the tests in one run – 
that is the resulting output must be 41 p-values greater than 0.01. Based on 100 run-throughs of 
the entire suite Random.org passed 68% of the time, Excel passed 76% of the time while Minitab 
passed 71% of the time. These percentages are somewhat related to the idea of the expected 
86% that was discussed in Section 4.2.4 but as noted there less than the 86% would be expected 
because of the dependence between some of the p-values. 
 
Table N.2 shows the p-value results of the two true random number generators – 
Randomnumbers.info and Hotbits. Both were subjected to suite of tests once. Hotbits passed all 
the tests in the suite (all p-values are greater than 0.01).  Randomnumbers.info failed both the 
Non-overlapping and Overlapping Template Matching test. The generator should not be deemed 
non-random because of these failures. Rather, these failures are evidence of non-randomness. 
Further testing should be done before any definitive conclusion is made. 
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Pass Rates 

    Random.org Excel Minitab 
1 Frequency (monobit) 98 99 96 
2 Frequency (block) 97 98 100 
3 Runs test 99 97 100 
4 Longest run of ones in a block 100 100 100 
5 Binary matrix rank 100 99 99 
6 Discrete fourier transform (spectral) 100 100 96 
7 Non-overlapping template matching 100 100 98 
8 Overlapping template matching 98 100 99 
9 Maurer's universal statistical 99 100 100 

10 Linear complexity 99 100 100 
11 Serial (1) 96 99 98 

  Serial (2) 99 98 99 
12 Approximate entropy 100 99 99 
13 Cumulative sums (mode=0) 99 100 99 

  Cumulative sums (mode=1) 99 99 99 
14 Random excursions (1) 97 100 99 

  Random excursions (2) 98 97 100 
  Random excursions (3) 99 99 99 
  Random excursions (4) 98 99 98 
  Random excursions (5) 99 98 99 
  Random excursions (6) 96 100 99 
  Random excursions (7) 98 99 97 
  Random excursions (8) 96 99 100 

15 Random excursions variants (1) 99 99 99 
  Random excursions variants (2) 99 100 99 
  Random excursions variants (3) 99 100 99 
  Random excursions variants (4) 99 100 99 
  Random excursions variants (5) 100 100 99 
  Random excursions variants (6) 100 100 99 
  Random excursions variants (7) 99 100 100 
  Random excursions variants (8) 99 99 100 
  Random excursions variants (9) 99 99 99 
  Random excursions variants (10) 99 98 99 
  Random excursions variants (11) 99 100 99 
  Random excursions variants (12) 100 100 99 
  Random excursions variants (13) 100 100 100 
  Random excursions variants (14) 99 99 99 
  Random excursions variants (15) 98 99 99 
  Random excursions variants (16) 98 100 99 
  Random excursions variants (17) 98 100 97 
  Random excursions variants (18) 99 100 98 
          

Table N.1 Pass Rates  

Note: These pass rates are based on 100 tests. 
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P-values 
    RN.info Hotbits 

1 Frequency (monobit) 1.0000 0.8415 
2 Frequency (block) 0.3970 0.0914 
3 Runs test 0.1096 0.6920 
4 Longest run of ones in a block 0.9436 0.1654 
5 Binary matrix rank 0.0732 0.2866 
6 Discrete fourier transform (spectral) 0.9750 0.3178 
7 Non-overlapping template matching 0.0000 0.2860 
8 Overlapping template matching 0.0000 0.0868 
9 Maurer's universal statistical 0.6498 0.8207 

10 Linear complexity 0.8347 0.1624 
11 Serial (1) 0.7678 0.8010 

  Serial (2) 0.7854 0.6526 
12 Approximate entropy 0.3818 0.9310 
13 Cumulative sums (mode=0) 0.2192 0.3230 

  Cumulative sums (mode=1) 0.1783 0.3230 
14 Random excursions (1) 0.9920 0.3264 

  Random excursions (2) 0.7558 0.6843 
  Random excursions (3) 0.8741 0.3741 
  Random excursions (4) 0.9499 0.8120 
  Random excursions (5) 0.6241 0.9421 
  Random excursions (6) 0.8031 0.3060 
  Random excursions (7) 0.6597 0.3289 
  Random excursions (8) 0.8423 0.2430 

15 Random excursions variants (1) 0.2716 0.6480 
  Random excursions variants (2) 0.3838 0.4274 
  Random excursions variants (3) 0.8378 0.3334 
  Random excursions variants (4) 0.8988 0.5219 
  Random excursions variants (5) 0.5044 0.6452 
  Random excursions variants (6) 0.4491 0.6810 
  Random excursions variants (7) 0.3458 0.5216 
  Random excursions variants (8) 0.2476 0.2019 
  Random excursions variants (9) 0.2918 0.2138 
  Random excursions variants (10) 0.8330 0.9587 
  Random excursions variants (11) 0.1616 0.7197 
  Random excursions variants (12) 0.1090 0.9262 
  Random excursions variants (13) 0.2168 0.8550 
  Random excursions variants (14) 0.3797 0.6247 
  Random excursions variants (15) 0.2799 0.3932 
  Random excursions variants (16) 0.1360 0.2877 
  Random excursions variants (17) 0.2763 0.2806 
  Random excursions variants (18) 0.5227 0.4611 
        

Table N.2 P-values for TRNG comparative 
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Having looked at the pass rates NIST then recommends examining the uniformity of the p-values. 
Table N.3 shows the results of a chi-square test on the p-values as described in Section 4.2.4.2. 
Highlighted in red are the chi-square values that exceed the critical value of 33.725. It can be 
seen that Excel results lack uniformity for both the overlapping and non-overlapping template 
matching tests. Random.org perhaps lacks uniformity in the cumulative sums test (forward mode). 
Its chi-square value marginally exceeds the critical value. Because it is such a small departure 
from the critical value and all other uniformity checks are well below the critical value, the overall 
uniformity of p-values is concluded to be satisfactory.  
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Uniformity Check 

    Random.org Excel Minitab 
1 Frequency (monobit) 32 22.6 17 
2 Frequency (block) 9.8 16.4 5.8 
3 Runs test 24.2 4.6 24 
4 Longest run of ones in a block 7.6 11.6 6.2 
5 Binary matrix rank 10.4 9.8 14.8 
6 Discrete fourier transform (spectral) 6.4 1.8 3.6 
7 Non-overlapping template matching 14.6 94.4 4 
8 Overlapping template matching 12.6 176.8 3.6 
9 Maurer's universal statistical 12.4 7.6 10 

10 Linear complexity 3.2 22.8  
11 Serial (1) 5.4 9 4 

  Serial (2) 3.4 2.6 13.2 
12 Approximate entropy 7.8 6.4 10.4 
13 Cumulative sums (mode=0) 34.2 9.4 19.2 

  Cumulative sums (mode=1) 22 12.8 23.7 
14 Random excursions (1) 12.2 14.8 7 

  Random excursions (2) 12 10.2 22.4 
  Random excursions (3) 10.8 2.4 12.6 
  Random excursions (4) 3.2 10.8 16 
  Random excursions (5) 14.6 6 12 
  Random excursions (6) 8.2 8.6 12.2 
  Random excursions (7) 7.4 7.6 8.6 
  Random excursions (8) 11.4 10.6 19.2 

15 Random excursions variants (1) 1 19.4 11.4 
  Random excursions variants (2) 2.6 27.2 13.8 
  Random excursions variants (3) 5.2 12.2 8.2 
  Random excursions variants (4) 11.2 21 17 
  Random excursions variants (5) 14 10.6 14.8 
  Random excursions variants (6) 10 15.2 3 
  Random excursions variants (7) 2.4 16.2 14.4 
  Random excursions variants (8) 5.4 6.2 4.2 
  Random excursions variants (9) 11.4 4.6 6.4 
  Random excursions variants (10) 8.4 13.2 3.6 
  Random excursions variants (11) 10.2 5.4 8 
  Random excursions variants (12) 8.2 7.8 8 
  Random excursions variants (13) 17.8 8.6 3.2 
  Random excursions variants (14) 10.4 12.8 9.4 
  Random excursions variants (15) 13.8 2.2 17 
  Random excursions variants (16) 11.4 9.8 12.6 
  Random excursions variants (17) 11.6 5 8.2 
  Random excursions variants (18) 9.4 2.8 14.2 
          

Table N.3 Uniformity Check on p-values 
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What follows are the histograms of each of the generators for each test. Essentially Table N.3 is a 
summary of these. 
 

Frequency Test 
 

 
 
 
 

Frequency Block Test 
 

 
 
 
 

Runs Test 
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Longest Run in Block Test 

 

 
 
 
 

Binary Matrix Test 
 

 
 
 
 

Discrete Fourier (Spectral) Test 
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Non-Overlapping Template Matching Test 

 

 
It is for this test that Excel lacks uniformity. Visually, without any formal test, this is evident. 
 

Overlapping Template Matching Test 
 

 
It is for this test also that Excel lack uniformity. Again the bias towards certain bins of p-values is 
again seen. 
 

Maurer's "Universal Statistical" Test 
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Linear Complexity Test 

 

  

A sufficient amount of p-values for 

Minitab were not collected for this 

test to construct a reasonable 

graph. 

 
 
 

Maurer's "Universal Statistical" Test 
 

 
 
 
 

Serial Test  
 

 
Note: The Serial Test returns two p-values. These histograms are of what NIST call P-value 1.  
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Approximate Entropy Test 

 

 
 
 
 

Cumulative Sums Test (mode=0) 
 

 
Note: The Cumulative Sums Test results in 2 p-values – one for the forward cumulative sum 
(mode=0) and one for the backward cumulative sum (mode=1). The former is shown here. It is for 
this test that Random.org fails the test for uniformity.  
 
 

Excursions Test 
 

 
Note: The Excursions Test results in 8 p-values, one for each state. The histograms here show 
state x=-3. 
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Excursions Variant Test 
 

 
Note: The Excursions Variant Test results in 18 p-values, one for each of the states defined in the 
test (see Appendix K). The histograms here show state x=5. 
 
 

Excel

0 
2 
4 
6 
8 

10 
12 
14 
16 
18 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Minitab

0
2
4
6
8

10
12
14
16
18

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Random.org 

0 
2 
4 
6 
8 

10 
12 
14 
16 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 



 
 

  O.1   

O. GRAPHICS 
 
As is mentioned in Section 3.4 graphics are a good way to explore the data. They are also 
particularly useful for those that do not have a background in statistics. The client also expressed 
an interest in graphics recommendations as not only would they aid interpretation but would look 
attractive on the website. This appendix gives an example of what kinds of charts could be 
constructed. 
 
X-bar Chart of P-values 
 
It is recommended that an X-bar chart of p-values for each test be constructed similar to Figure 
O.1 below. This will allow identification of possible trends in the p-values of a particular test over 
time and also identifies the p-values below a certain threshold (red line). 
 

X-bar Chart of P-Values
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O.1 X-bar chart of p-values 

 
NIST describe three “visualization approaches”, or graphics, in the manual. This graphics relate 
to three of the tests in the test suite – the Discrete Fourier Transform (Spectral) Test, the 
Approximate Entropy Test and the Linear Complexity Test. 
 
Discrete Fourier Transform (Spectral) Plot 
 
Figure O.2 depicts the spectral components (i.e. the modulus of the DFT) obtained via the 
application of the Fast Fourier Transform on a sample random binary sequence (consisting of 
5000 bits). To demonstrate how the spectral test can detect periodic features in the binary 
sequence, every 10th bit was changed to a one. To pass this test, no more than 5 % of the peaks 
should surpass the 95 % cutoff, (determined to be 47.1225000*3 ≈ . Clearly, greater than 

5 % of the peaks exceed the cutoff point in the figure. Thus, the binary sequence fails this test. 
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Figure O.2: Discrete Fourier Transform Plot 

Source: NIST Manual 
 
Approximate Entropy (ApEn) Graph 
 
Figure O.3 depicts the approximate entropy values (for block length = 2) for three binary 
sequences, the binary expansion of e and p, and a binary sequence taken from a pseudo-random 
number generator called SHA-1. In theory, for an n-bit sequence, the maximum entropy value 
that can be attained is 693147.0)2ln( ≈ . The x-axis reflects the number of bits considered in the 

sequence. The y-axis reflects the deficit from maximal irregularity, that is, the difference between 
the ln (2) and the observed approximate entropy value. Thus, for a fixed sequence length, one 
can determine which sequence appears to be more random. For a sequence of 1,000,000 bits, e 
appears more random than both p and the SHA-119 sequence. However, for larger block sizes, 
this is not the case. 
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Figure O.3: Approximate Entropy Graph 

Source: NIST Manual 
 
 
 
Linear Complexity Profile 
 
Figure O.4 depicts the linear complexity profile for a pseudo-random number generator that is 
strictly based on the XOR (exclusive-or) operator. The generator is defined as follows: given a 
random binary seed, 127321 ,...,,, xxxx , subsequent bits in the sequence are generated 

according to the following rule: 1271 −− ⊕= iii xxx  for 128≥i . 

The Berlekamp-Massey algorithm computes the connection polynomial that, for some seed value, 
reconstructs the finite sequence. The degree of this polynomial corresponds to the length of the 
shortest Linear Feedback Shift Register (LFSR) that represents the polynomial. The linear 
complexity profile depicts the degree, which for a random finite length (n-bit) sequence is about 
n/2. Thus, the x-axis reflects the number of bits observed in the sequence thus far. The y-axis 
depicts the degree of the connection polynomial. At n = 254, observe that the degree of the 
polynomial ceases to increase and remains constant at 127. This value precisely corresponds to 
the number of bits in the seed used to construct the sequence. 
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Figure O.4: Linear Complexity Profile 

Source: NIST Manual 
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P. FURTHER READING 
 
This appendix lists some suggested reading for those who are interested to learn more about 
generating and testing random number generators and for the person who may develop upon this 
project. These are documents which are not referred to directly in the text but were background 
reading. The list here is in addition to the references in Appendix X. 
 
1. Pincus and Kalman. Not all (possibly) “random” sequences are created equal. Proc. Natl. 

Acad. USA. Vol 94, pp 3513-1528, April 1997. 
2. Pincus and Singer. Randomness and degrees of irregularity. Proc. Natl. Acad. USA. Vol 93, 

pp 2038-2088, March 1996. 
3. Szczepanski et al. Biometric Random Number Generators, Computers and Security (2004) 

23, 77-84. Elsevier. 
4. Holiday Photos Test Galaxy Theory, News in Science – 15/09/2004 
5. Deng and Lin, Random Number Generation for the New Century. The American Statistician, 

May 2000; 54, 2. 
6. L’Ecuyer, Pierre. Uniform Random Number Generators: A Review. Proceedings of the 1997 

Winter Simulation Conference. 
7. Lagarias, Jeffrey C., Pseudorandom Numbers. Statistical Science 1993, Vol 8, No. 1, 31-39. 
8. Kahn, David. The Code Breakers: The Comprehensive History of Secret Communication 

from Ancient Times to the Internet. 1967. 
9. Ritter, Terry, Randomness Tests: A Literature Survey. 

http://www.ciphersbyritter.com/RES/RANDTEST/HTM 
10. Bennett, D. J. Randomness. Cambridge, MA: Harvard University Press, 1998. 
11. Marsaglia & Zaman, Monkey Tests for Random Number Generators, Computer Mathematics 

Applications, Vol 26, No. 9, pp1-10, 1993. 
12. Schindler & Killman, Evaluation Criteria for True (Physical) Random Number Generators 

Used in Crytographic Applications, Springer-Verlag Berlin Heidelberg 2003. 
13. Hayes, Brian, Randomness as a Resource, American Scientist Volume 89, Number 4, July-

August 2001 (pages 300-304) 
14. L’Ecuyer, Pierre. Random Numbers for Simulation. Communications of the ACM Volume 33, 

Issue 10 (October 1990), pages 85-87. 
15. Park & Miller, Random Number Generators: Good Ones are Hard To Find, Communications 

of the ACM, Computing Practices, October 1988, Volume 31, Number 10. 
16. Modianos et al., Testing Intrinsic Random-Number Generators, Byte Programming Insight, 

January 1987 
17. Kronmal, Richard, Evaluation of a Pseudorandom Normal Number Generator, Journal of the 

Association for Computing Machinery, Vol 11, No.3 (July 1964) pp.357-363. 
18. Marsaglia, George, A Current View of Random Number Generators, Keynote Address, 

Computer Science and Statistics: 16th Symposium on the Interface, 1984. 
19. How We Learned to Cheat at Online Poker: A Study in Software Security By Brad Arkin 

Frank Hill Scott Marks Matt Schmid and Thomas John Walls 
http://www.developer.com/tech/article.php/616221 
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20. True random number generators http://www.robertnz.net/true_rng.html 
21. Maclaren, Nick. Cryptographic Pseudo-random Numbers in Simulation. Fast software 

encryption : Cambridge Security Workshop, Cambridge, U.K., December 9-11, 1993 : 
proceedings  

22. Tsang et al., Tuning the Collision Test for Stringency, HKU CSIS Tech Report, May 2000. 
23. L’Ecuyer, Pierre. Software for Uniform Random Number Generation: Distinguishing the Good 

and the Bad. 
24. The Evaluation of RPG100 by Using NIST and DIEHARD tests, FDK Corporation, Dec 2003. 

http://www.fdk.co.jp/cyber-e/pdf/HM-RAE104.pdf 
25. Murphy, Sean. The Power of NIST’s Statistical Testing of AES Candidates, Information 

Security Group, University of London, March 2000. (but NIST 2001) 
26. Schindler and Killmann, Evaluation Criteria for True (Physical) Random Number Generators 

Used in Cryptographic Applications, Revised Papers from the 4th International Workshop on 
Cryptographic Hardware and Embedded Systems, 2002 
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Q. GLOSSARY 
 
This glossary is provided for the convenience of the reader.  
 
Term Definition 
Entropy  
 

A measure of the disorder or randomness in a closed 
system. 

Alternative hypothesis The alternative to the null hypothesis. In this case it is any 
non-random characteristic. 

Binary 0 or 1 
Binary Sequence Sequence of zeroes and ones 
Bit string A sequence of bits 
Block A subset of a bit string. A block has a predetermined length 
Compressibility  
 

Refers to the existence of a sub-sequence that represents 
the entire sequence. 

Confidence interval An interval which is believed, with a pre-assigned degree of 
confidence, to include the particular value of some 
parameter being estimated 

Critical Value The value that is exceeded by the test statistic with a small 
probability (significance level). A “look up” or calculated 
value of a test statistic that, by construction, has a small 
probability of occurring when the null hypothesis is true. 

Cryptography  
 

The art or science of turning meaningful sequences into 
apparently random noise in such a way that a key-holder 
can recover the original data 

Deterministic  
 

Given the same initial seed, the generator will always 
produce the same output sequence. 

Entropy source A physical source of information whose output either 
appears to be random in itself or by applying some 
filtering/distillation process. 

Hypothesis Test  
 

is a procedure for determining if an assertion about a 
characteristic of a population is reasonable. 

Linear congruential method  
 

A popular algorithm for generating random numbers 
X(n+1)=(aX(n)+c)mod m, n>=0 
(note that it always gets into a loop) 

Loop  A cycle of numbers that is repeated endlessly. 
Matlab An integrated, technical computer environment that 

combines numeric computation, advanced graphics and 
visualization, and a high level programming language. 
http://www.mathworks.com/ 

Mixed congruential method  Linear Congruential Method when c=!0 
Monte Carlo methods A general term used for any algorithm that employs random 
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numbers. 
Multiplicative congruential method Linear Congruential Method when c=0 
NIST  National Institute of Standards and Technology 
Null hypothesis The stated hypothesis. In this case, the null hypothesis is 

that a binary sequence is random from a statistical 
viewpoint. 

Oscillation  
 

Refers to abrupt changes between runs of zeroes or runs of 
ones 

Period The repeating cycle. A useful sequence will have a 
relatively long period. 

Periodicity  Refers to sub-sequences that repeat. 
PRNG Pseudorandom Number Generator 
Pseudo-random numbers  
 

A sequence of pseudo-random numbers is a deterministic 
sequence of numbers having the same statistical properties 
as a sequence of random numbers. 

p-value A measure of the strength of the evidence provided by the 
data against the hypothesis 

Random bit generator  
 

Is a device or algorithm which output a sequence of 
statistically independent and unbiased binary digits. 

Random walk  
 

A sequence of steps, each of whose characteristics is 
determined by chance 

Rank (of a matrix) Refers to the rank of a matrix in linear algebra. Having 
reduced a matrix to row-echelon form via elementary row 
operations, the number of nonzero rows, if any, are counted 
in order to determine the number of linearly independent 
rows or columns in the matrix 

RNG  Random Number Generator 
Run 
 

An uninterrupted sequence of like bits (i.e., either all zeroes 
or all ones) A run of 0’s is called a gap, while a run of 1’s is 
called a block. 

Seed The input to a pseudorandom number generator. Different 
seeds generate different pseudorandom sequences. 

Significance level Usually denoted as, alpha (α ), it is the least upper bound 
of the probability of an error of type I for all distributions 
consistent with the null hypothesis.  

Simulation This is the re-creation, albeit in a simplified manner, of a 
complex phenomena, environment, or experience, 
providing the user with the opportunity for some new level 
of understanding. 

Test statistic A statistic upon which a test of a hypothesis is based. 
TRNG True Random Number Generator 
Type I error The likelihood that a test rejects a binary sequence that 
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was, in fact, produced by an acceptable random number 
generator. 

Type II error The likelihood that a test accepts a binary sequence that 
was, in fact, produced by an unacceptable random number 
generator. 
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